Indivisual Research
My indivisual is about finding invariant representation (scalar) by using partition function(Hilbert series) and integral over group.
Starting paper is Hilbert Series for Adjoint SQCD.
Next page is Mathematica with FORM.
Prerequisite Knowledge
I used repersentation theory for Lie group.
To calculate, i also use residue theorem.
Method
They use Mathematica to calculate integral over the group.
Simple Mathematica Code example is here.
su3cfu[z1_, z2_] := z1 + z2/z1 + 1/z2
su3caf[z1_, z2_] := z2 + z1/z2 + 1/z1
su3cad[z1_, z2_] := z1 z2 + z2^2/z1 + z1^2/z2 + 2 + z1/z2^2 + z2/z1^2 + 1/(z1 z2)
su3h[z1_, z2_] := 1/( z1 z2) (1 - z1 z2) (1 - z1^2/z2) (1 - z2^2/z1)
Nf:=6
PE[z1_,z2_, t_, s_,o_] = E^Sum[(Nf*su3cfu[z1^n,z2^n]*t^n +Nf* su3caf[z1^n,z2^n]*o^n+su3cad[z1^n,z2^n]*s^n)/n, {n,1,6}]//Simplify
expan[z1_,z2_,s_,t_,o_]=Series[PE[z1,z2,t,s,o]*su3h[z1,z2],{o,0,3},{t,0,3},{s,0,6}]//Normal//Expand
g[s_,t_, o_] = SeriesCoefficient[SeriesCoefficient[expan[z1,z2,s,t,o]*z1*z2,{z1,0,0}],{z2,0,0}]//Expand
PL[t_,s_,o_] =Series[ Sum[(MoebiusMu[n]*Sum[-(1-g[s^n,t^n,o^n])^k/k,{k,1,10}])/n, {n, 1,10}],{o,0,3},{t,0,3},{s,0,6}]//Normal//Simplify//Expand
They use 1 adjoint representation, N_f fundamental representation, N_f antifundamental representation.
Dimension of SU(N) tensor
Let's compute with Young Tableaux.
Highest order coefficient is always positive.
Order of N is same number as sum of blocks.
[1,0,\cdots,0]=N
[0,1,0,\cdots,0]=N^2/2+N/2
[0,0,1,0,\cdots,0]=_NC_3=N^3/6-N^2/2+N/6
[0,0,0,1,0\cdots,0]=_NC_4=N^4/24-N^3/4+11N^2/24-N/4
[1,1,0,\cdots,0]=N^3/3-N/3
[1,0,1,0,\cdots,0]=
[1,1,1,0\cdots,0]=
[2,0,\cdots,0]=N^2/2-N/2
[3,0,\cdots,0]=N^3/6+N^2/2+N/6
[0,2,0,\cdots,0]=
[2,1,0,\cdots,0]=
[4,0,\cdots,0]=
Application
2 adjoint
Let's think 2 adjoint representation(in SU(N), [1,0,\cdots,0,1]), N_f fundamental representation, N_f antifundamental representation.
For SU(2), (under order 6)
PL[g^{(N,SU(2))}(s_1,s_2,t)]=(s_1^2+s_1s_2+s_2^2)+[N_f(2N_f+1)]t^2+([N_f(2N_f-1)]+[N_f(2N_f+1)](s_1+s_2+s_1s_2))t^2-\cdots
For SU(3), (under order 6)
PL[g^{(N,SU(3))}(s_1,s_2,t,o)]=[N_f^2]to+(s_1s_2+s_1^2+s_2^2)+[N_f^2](s_1+s_2)to+[N_f(N_f-1)(N_f-2)/6](t^3+o^3)+(s_1^3+s_1^2s_2+s_1s_2^2)+[N_f^2](s_1^2+2s_1s_2+s_2^2)to+[N_f(N_f+1)(N_f-1)/3](s_1+s_2)(t^3+o^3)+s_1^2s_2^2+([N_f(N_f+1)(N_f-1)/3]s_1^2+[N_f(N_f+1)(5N_f-2)/6]s_1s_2+[N_f(N_f+1)(N_f-1)/3]s_2^2)(t^3+o^3) +[N_f^2](2s_1s_2^2+2s_1^2s_2)to+([N_f(N_f+1)(N_f+2)/6]s_1^3+[N_f^2(N_f+1)]s_1^2s_2+[N_f^2(N_f+1)]s_1s_2^2+[N_f(N_f+1)(N_f+2)/6]s_2^3)(t^3+o^3)+[N_f^2](s_1^3s_2+2s_1^2s_2^2+s_1s_2^3)ot+s_1^3s_2^3
[N_f^2]:\ [1,0,\cdots,0]\times [0,\cdots,0,1]
[N_f(N_f-1)(N_f-2)/6]:\ [0,0,1,0\cdots,0]
[N_f(N_f+1)(N_f-1)/3]:\ [1,1,0,\cdots,0]
[N_f(N_f+1)(5N_f-2)/6]:\ [3,0,\cdots,0]+4[1,1,0,\cdots,0]
[N_f(N_f+1)(N_f+2)/6]:\ [3,0,\cdots,0]
[N_f^2(N_f+1)]:\ 2[3,0,\cdots,0]+4[1,1,0,\cdots,0]
Then. new terms arise!
Blended Casimir Operator: s_1^2s_2, s_1^3s_2^3
Blended Adjoint Meason: s_1s_2t\tilde{t}, s_1^3s_2t\tilde{t}
Blended Adjoint Baryon 1: s_1s_2t^3:
Blended Adjoint Baryon 2: s_1^2s_2t^3:
Interpretation: s_1 and s_2 have SU(2) symmtery.
For SU(4), PL is complicated.
PL[t_,s1_,s2_,o_]=
Series[Sum[(MoebiusMu[n]*Sum[-(1-g[s1^n,s2^n,t^n,o^n])^k/k,
{k,1,Floor[6/n]}])/n,{n,1,6}],{o,0,4},{t,0,4},{s1,0,8},{s2,0,8}]//Normal//Expand
Goal is order s^6t^4.
Order별로 나눠서 table로 대입?
For Sp(2), (under order 8)
PL[s_1,0,t]'=s_1^2+s_1^4+(2N^2-N)t^2+(2N^2+N)s_1t^2+(2N^2-N)s_1^2t^2+(2N^2+N)s_1^3t^2+...
PL[s_1,s_2,0]'=(s_1^2+s_1s_2+s_2^2)+(s_1^4+s_1^3s_2+2s_1^2s_2+s_1s_2^3+s_2^4)+(s_1^4s_2^2+s_1^3s_2^3+s_1^2s_2^4)+(s_1^4s_2^3+s_1^3s_2^4)+(s_1^6s_2^3+s_1^5s_2^4+s_1^4s_2^5+s_1^3s_2^6)
PL[s_1,s_2,t]'=4N^2s_1s_2t^2+(6N^2+N)(s_1^2s_2+s_1s_2^2)t^2+((6N^2+N)s_1^3s_2+8N^2s_1^2s_2^2+(6N^2+N)s_1s_2^3)t^2+(4N^2s_1^4s_2+(10N^2+N)s_1^3s_2^2+(10N^2+N)s_1^2s_2^3+4N^2s_1s_2^4)t^2+((4N^2+N)s_1^5s_2+(8N^2+2N)s_1^4s_2^2+(12N^2+4N)s_1^3s_2^3+(8N^2+2N)s_1^2s_2^4+Ns_1^5+(4N^2+N)s_1s_2^5)t^2+(4N^2s_1^5s_2^2+8N^2s_1^4s_2^3+8N^2s_1^3s_2^3+4N^2s_1^2s_2^4)t^2+((2N^2+N)s_1^6s_2^2+(4N^2+2N)s_1^4s_2^4+(2N^2+N)s_1^2s_2^6)t^2
Casimir invariants: s^{2k} :u_{2k}=Tr(\phi^{2k}) (k=1,2,\cdots,N_c) 1dim
Measons: t^2 :M^{ij}=J^{ab}Q^i_aQ^j_b (a,b=,1,2,\cdots,2N_c) N(2N-1)dim
Even adjoint measons: s^{2l}t^2 :(A_{2l})^{ij}=J^{a_1b_1}J^{c_1b_2}J^{c_2b_3}\cdots J^{c_{2l-1}b_{2l}}J^{c_{2l}a_{2l}}Q^i_{a_1}\phi_{b_1c_2}\phi_{b_2v_2}\cdots \phi_{b_{2l}c_{2l}Q^j_{a_{2l}} N(2N-1)$dim
Odd adjoint measons: s^{2k-1}t^2 :(A_{2k-1})^{ij}=J^{a_1b_1}J^{c_1b_2}\cdots J^{c_{2k-1}a_{2k-1}}Q^i_{a_1}\phi_{b_1c_2}\phi_{b_2c_2}\cdots \phi_{b_{2k-1}c_{2k-1}}Q^j_{a_{2k-1}} N(2N+1) dim
Blended Casimir invariants: s_1^{k_1}s_2^{k_2} (k_1,k_2)=(2,0),(1,1),(0,2),\ (4,0),(3,1),(1,3),(0,4),\ (4,2),(3,3),(2,4)\ (4,3),(3,4),\ (6,3),(5,4),(4,5),(3,6)
Blended Adjoint measons: s_1^{k_1}s_2^{k_2}t^2
For SO(3), (under order 4)$
For SO(4), (under order 4)
PL[0,0,t]=(N^2/2+N/2)t^2+(N^4/24-N^3/4+11N^2/24-N/4)t^4
PL[s_1,s_2,0]=2s_1^2+2s_1s_2+2s_2^2
PL[s,0,t]'=(N^2-N)st^2+(N^2/2+N/2)s_1^2t^2
PL[s_1,s_2,t]'=2N^2s_1s_2t^2+(N^2+N)(s_1^2s_2+s_1s_2^2)t^2
For SO(5),
More complicated...
PL[0,0,t]=(N^2/2+N/2)t^2+(N^5/120-N^4/12+7N^3/24-5N^2/12+N/5)t^5
PL[s_1,s_2,0]=(s_1^2+s_1s_2^2+s_2^2)+(s_1^4+2s_1^2s_2^2+s_2^4)+(s_1^4s_2^2+s_1^3s_2^3+s_1^2s_2^4)+(s_1^4s_2^3+s_1^3s_2^4)+(s_1^6s_2^3+s_1^5s_2^4+s_1^4s_2^5+s_1^3s_2^6)
PL[s,0,t]'=Ns^2t+(N^2/2-N/2)st^2+(N^2/2+N/2)s^2t^2+(N^2/2-N/2)s^3t^2+(N^3/6-N^2/2+N/3)st^3+(N^5/120-N^4/12+7N^3/24-5N^2/12+N/5)s^5t^5+(N^5/120-N^4/12+7N^3/24-5N^2/12+N/5)s^6t^5+(N^6/48-5N^5/48+5N^4/48+5N^3/48-N^2/8)s^5t^6+(9N^6/80-9N^5/16+17N^4/16-15N^3/16+13N^2/40)s^6t^6
PL[s_1,s_2,t]'=Ns_1s_2t+N(s_1^2s_2+s_1s_2^2)t+N(s_1^3s_2+2s_1^2s_2+s_1s_2^3)t+N(s_1^4s_2+2s_1^3s_2^2+2s_1^2s_2^3+s_1s_2^4)t+2Ns_1^2s_2^2t+N(s_1^4s_2^2+s_1^3s_2^3+s_1^2s_^4)t+N(s_1^5s_2^2+s_1^4s_2^3+s_1^3s_2^4+s_1^2s_2^5)t+N^2s_1s_1t^2+
13N^3s_1^6s_2^3t^4
65N^4s_1^5s_2^4t^4
767N^4s_1^6s_2^4t^4
27N^5s_1^5s_2t^5
661N^5s_1^6s_2^2t^5/120
241N^5s_1^4s_2^4t^5/120\
...
For G_2, (under order 6)
...symmteric tensor and that's conjugate
Let's think 1 or 2 symmetric tensor(in SU(N), [2,0,\cdots,0]), 1 or 2 conjugate of symmetric tensor(in SU(N), [0,\cdots,0,2]), N_f fundamental representation, N_f antifundamental representation.
Character is \frac{1}{2}(\chi(fun^2)-\chi(fun)^2)
For example, SU(2) symmetric tensor is [2], which is same as adjoint representation above.
For SU(3), (under order 6)
Weight diagram of symmetric 2 tensor is
\chi_{symm}=z_1^2+z_2+z_2^2/z_1^2+z_1/z_2+1/z_1+1/z_2^2
\chi_{ants}=z_2^2+z_1+z_1^2/z_2^2+z_2/z_1+1/z_2+1/z_1^2
For 1 symm, conj. symm,
PL[s_1,s_2,0,0]=s_1^3+s_1s_2+s_1^2s_2^2+s_2^3
PL[s,0,t,0]=s^3+s^2t^2(N^2/2+N/2)+t^3(N^3/6-N^2/2+N/3)
PL[s,0,t,o]-PL[s,0,t,0]-PL[s,0,0,o]-PL[0,0,t,o]+PL[s,0,0,0]+PL[0,0,t,0]+PL[0,0,0,o]=to^2s^2(N^3/2-N^2/2)+t^2os(N^3/2-N^2/2)-\cdots
PL[s_1,s_2,t,0]-PL[s_1,s_2,0,0]-PL[s_1,0,t,0]-PL[0,s_2,t,0]+PL[s_1,0,0,0]+PL[0,s_2,0,0]+PL[0,0,t,0]\\ =t^2s_1s_2^2(N^2/2+N/2)+t^3s_1s_2(1+s_1s_2)(N^3/3-N/3)+t^3s_1^3s_2^3(N^3/6+N^2/2+N/3)
PL[s_1,s_2,t,o]-PL[s_1,s_2,t,0]-PL[s_1,s_2,0,o]-PL[s_1,0,t,o]-PL[0,s_2,t,o]+PL[s_1,s_2,0,0]+PL[s_1,0,t,0]+PL[s_1,0,0,o]+PL[0,s_2,t,0]+PL[0,s_2,0,o]+PL[0,0,t,o]-PL[s_1,0,0,0]-PL[0,s_2,0,0]-PL[0,0,t,0]-PL[0,0,0,o]\\ =to(s_1s_2+s_1^2s_2^2)N^2+to^2s_1^2s_2(s_1+s_2^2)(N^3/2+N^2/2)+to^2s_1s_2^2N^3+t^2os_1s_2^2(s_1^2+s_2)(N^3/2+N^2/2)+t^3o^3s_1^5s_2^5(2N^6/9-N^5-4N^4/9+2N^2/9)+t^3o^3s_1^6s_2^6(11N^6/36-N^5/6-13N^4/36-N^3/3-4N^2/9)
2 symmetric&conj. symm.
PL[s1,s2,0,0]=2 \text{s1}^4 \text{s2}+4 \text{s1}^3 \text{s2}^3+4 \text{s1}^3+9 \text{s1}^2 \text{s2}^2+2 \text{s1} \text{s2}^4+4 \text{s1} \text{s2}+4 \text{s2}^3
PL[s1,0,t,0]=\frac{1}{6} N^3 \text{s1}^6 t^3+\frac{2}{3} N^3 \text{s1}^3 t^3+\frac{N^3 t^3}{6}+\frac{1}{2} N^2 \text{s1}^6 t^3+\frac{3}{2} N^2 \text{s1}^2 t^2-\frac{N^2 t^3}{2}+\frac{1}{3} N \text{s1}^6 t^3-\frac{2}{3} N \text{s1}^3 t^3+\frac{3}{2} N \text{s1}^2 t^2+\frac{N t^3}{3}+4 \text{s1}^3
PL[s,0,t,o]'=+\frac{11}{6} N^3 o^3 s^5 t^2+N^3 o^2 s^5 t+2 N^3 o^2 s^2 t+2 N^3 o s^4 t^2+N^3 o s t^2+N^2 o^2 s^5 t-N^2 o^2 s^2 t+N^2 o s^4 t^2+2 N^2 o s^3 t-N^2 o s t^2
PL[s1,s2,t,0]'=\frac{5}{3} N^3 \text{s1}^4 \text{s2} t^3+5 N^3 \text{s1}^2 \text{s2}^2 t^3+N^3 \text{s1} \text{s2}^4 t^3+\frac{4}{3} N^3 \text{s1} \text{s2} t^3+N^2 \text{s1}^6 \text{s2} t^2+\frac{15}{2} N^2 \text{s1}^4 \text{s2}^2 t^2+3 N^2 \text{s1}^4 \text{s2} t^3+2\ 4 N^2 N^2 \text{s1}^3 \text{s1} \text{s2} \text{s2}^5 t^2 t^2+10 N^2 \text{s1}^2 \text{s2}^3 t^2+3 N^2 \text{s1}^2 \text{s2}^2 t^3+3 N^2 \text{s1} \text{s2}^4 t^3+4 N^2 \text{s1} \text{s2}^2 t^2+2 N \text{s1}^6 \text{s2}^2 t-N \text{s1}^6 \text{s2} t^2+4 N \text{s1}^5 \text{s2} t+20 N \text{s1}^4 \text{s2}^3 t-\frac{9}{2} N \text{s1}^4 \text{s2}^2 t^2+\frac{4}{3} N \text{s1}^4 \text{s2} t^3+8 N \text{s1}^3 \text{s2}^5 t+12 N \text{s1}^3 \text{s2}^2 t+13 N \text{s1}^2 \text{s2}^4 t-2 N \text{s1}^2 \text{s2}^3 t^2-2 N \text{s1}^2 \text{s2}^2 t^3+2 N \text{s1}^2 \text{s2} t-2 N \text{s1} \text{s2}^5 t^2++2 N \text{s1} \text{s2}^4 t^3+4 N \text{s1} \text{s2}^3 t+2 N \text{s1} \text{s2}^2 t^2-\frac{4}{3} N \text{s1} \text{s2} t^3
PL[s1,s2,t,o]'=...
General Number of Symm.
PL[s1,s2,0,0]=\frac{17 \text{s1}^3 \text{s2}^6 \text{Ns}^9}{4320}+\frac{17 \text{s1}^6 \text{s2}^3 \text{Ns}^9}{4320}+\frac{11}{360} \text{s1}^3 \text{s2}^6 \text{Ns}^8+\frac{1}{18} \text{s1}^4 \text{s2}^4 \text{Ns}^8+\frac{11}{360} \text{s1}^6 \text{s2}^3 \text{Ns}^8-\frac{31}{144} \text{s1}^3 \text{s2}^6 \text{Ns}^7+\frac{1}{15} \text{s1}^2 \text{s2}^5 \text{Ns}^7-\frac{1}{12} \text{s1}^4 \text{s2}^4 \text{Ns}^7-\frac{31}{144} \text{s1}^6 \text{s2}^3 \text{Ns}^7+\frac{1}{15} \text{s1}^5 \text{s2}^2 \text{Ns}^7+\frac{\text{s1}^6 \text{Ns}^6}{120}+\frac{17}{72} \text{s1}^3 \text{s2}^6 \text{Ns}^6+\frac{\text{s2}^6 \text{Ns}^6}{120}-\frac{11}{60} \text{s1}^2 \text{s2}^5 \text{Ns}^6-\frac{5}{18} \text{s1}^4 \text{s2}^4 \text{Ns}^6+\frac{17}{72} \text{s1}^6 \text{s2}^3 \text{Ns}^6+\frac{5}{36} \text{s1}^3 \text{s2}^3 \text{Ns}^6-\frac{11}{60} \text{s1}^5 \text{s2}^2 \text{Ns}^6+\frac{39}{160} \text{s1}^3 \text{s2}^6 \text{Ns}^5+\frac{1}{12} \text{s1}^2 \text{s2}^5 \text{Ns}^5+\frac{7}{12} \text{s1}^4 \text{s2}^4 \text{Ns}^5+\frac{1}{12} \text{s1} \text{s2}^4 \text{Ns}^5+\frac{39}{160} \text{s1}^6 \text{s2}^3 \text{Ns}^5-\frac{1}{6} \text{s1}^3 \text{s2}^3 \text{Ns}^5+\frac{1}{12} \text{s1}^5 \text{s2}^2 \text{Ns}^5+\frac{1}{12} \text{s1}^4 \text{s2} \text{Ns}^5-\frac{\text{s1}^6 \text{Ns}^5}{24}-\frac{\text{s2}^6 \text{Ns}^5}{24}+\frac{\text{s1}^6 \text{Ns}^4}{8}-\frac{29}{90} \text{s1}^3 \text{s2}^6 \text{Ns}^4+\frac{\text{s2}^6 \text{Ns}^4}{8}+\frac{1}{12} \text{s1}^2 \text{s2}^5 \text{Ns}^4-\frac{5}{18} \text{s1}^4 \text{s2}^4 \text{Ns}^4-\frac{29}{90} \text{s1}^6 \text{s2}^3 \text{Ns}^4+\frac{5}{36} \text{s1}^3 \text{s2}^3 \text{Ns}^4+\frac{1}{12} \text{s1}^5 \text{s2}^2 \text{Ns}^4+\frac{1}{4} \text{s1}^2 \text{s2}^2 \text{Ns}^4-\frac{7}{216} \text{s1}^3 \text{s2}^6 \text{Ns}^3-\frac{3}{20} \text{s1}^2 \text{s2}^5 \text{Ns}^3-\frac{1}{12} \text{s1} \text{s2}^4 \text{Ns}^3+\frac{\text{s1}^3 \text{Ns}^3}{6}-\frac{7}{216} \text{s1}^6 \text{s2}^3 \text{Ns}^3-\frac{1}{3} \text{s1}^3 \text{s2}^3 \text{Ns}^3+\frac{\text{s2}^3 \text{Ns}^3}{6}-\frac{3}{20} \text{s1}^5 \text{s2}^2 \text{Ns}^3+\frac{1}{2} \text{s1}^2 \text{s2}^2 \text{Ns}^3-\frac{1}{12} \text{s1}^4 \text{s2} \text{Ns}^3-\frac{7 \text{s1}^6 \text{Ns}^3}{24}-\frac{7 \text{s2}^6 \text{Ns}^3}{24}+\frac{11 \text{s1}^6 \text{Ns}^2}{30}+\frac{1}{18} \text{s1}^3 \text{s2}^6 \text{Ns}^2+\frac{11 \text{s2}^6 \text{Ns}^2}{30}+\frac{1}{10} \text{s1}^2 \text{s2}^5 \text{Ns}^2+\frac{\text{s1}^3 \text{Ns}^2}{2}+\frac{1}{18} \text{s1}^6 \text{s2}^3 \text{Ns}^2+\frac{2}{9} \text{s1}^3 \text{s2}^3 \text{Ns}^2+\frac{\text{s2}^3 \text{Ns}^2}{2}+\frac{1}{10} \text{s1}^5 \text{s2}^2 \text{Ns}^2+\frac{1}{4} \text{s1}^2 \text{s2}^2 \text{Ns}^2+\text{s1} \text{s2} \text{Ns}^2+\frac{\text{s1}^3 \text{Ns}}{3}+\frac{\text{s2}^3 \text{Ns}}{3}-\frac{\text{s1}^6 \text{Ns}}{6}-\frac{\text{s2}^6 \text{Ns}}{6}
PL[s1,0,t,0]=\frac{5}{36} \text{Nf}^3 \text{Ns}^3 \text{s1}^3 t^3-\frac{1}{12} \text{Nf}^3 \text{Ns}^2 \text{s1}^3 t^3-\frac{1}{18} \text{Nf}^3 \text{Ns} \text{s1}^3 t^3+\frac{\text{Nf}^3 t^3}{6}+\frac{1}{15} \text{Nf}^2 \text{Ns}^5 \text{s1}^5 t^2-\frac{1}{6} \text{Nf}^2 \text{Ns}^4 \text{s1}^5 t^2+\frac{1}{12} \text{Nf}^2 \text{Ns}^3 \text{s1}^5 t^2+\frac{1}{12} \text{Nf}^2 \text{Ns}^3 \text{s1}^3 t^3-\frac{1}{12} \text{Nf}^2 \text{Ns}^2 \text{s1}^5 t^2-\frac{1}{4} \text{Nf}^2 \text{Ns}^2 \text{s1}^3 t^3+\frac{1}{4} \text{Nf}^2 \text{Ns}^2 \text{s1}^2 t^2+\frac{1}{10} \text{Nf}^2 \text{Ns} \text{s1}^5 t^2+\frac{1}{6} \text{Nf}^2 \text{Ns} \text{s1}^3 t^3+\frac{1}{4} \text{Nf}^2 \text{Ns} \text{s1}^2 t^2-\frac{\text{Nf}^2 t^3}{2}-\frac{1}{60} \text{Nf} \text{Ns}^5 \text{s1}^5 t^2+\frac{1}{8} \text{Nf} \text{Ns}^4 \text{s1}^4 t+\frac{1}{6} \text{Nf} \text{Ns}^3 \text{s1}^5 t^2-\frac{1}{4} \text{Nf} \text{Ns}^3 \text{s1}^4 t-\frac{1}{18} \text{Nf} \text{Ns}^3 \text{s1}^3 t^3-\frac{1}{4} \text{Nf} \text{Ns}^2 \text{s1}^5 t^2-\frac{1}{8} \text{Nf} \text{Ns}^2 \text{s1}^4 t-\frac{1}{6} \text{Nf} \text{Ns}^2 \text{s1}^3 t^3+\frac{1}{4} \text{Nf} \text{Ns}^2 \text{s1}^2 t^2+\frac{1}{10} \text{Nf} \text{Ns} \text{s1}^5 t^2+\frac{1}{4} \text{Nf} \text{Ns} \text{s1}^4 t+\frac{2}{9} \text{Nf} \text{Ns} \text{s1}^3 t^3+\frac{1}{4} \text{Nf} \text{Ns} \text{s1}^2 t^2+\frac{\text{Nf} t^3}{3}+\frac{\text{Ns}^6 \text{s1}^6}{120}-\frac{\text{Ns}^5 \text{s1}^6}{24}+\frac{\text{Ns}^4 \text{s1}^6}{8}-\frac{7 \text{Ns}^3 \text{s1}^6}{24}+\frac{\text{Ns}^3 \text{s1}^3}{6}+\frac{11 \text{Ns}^2 \text{s1}^6}{30}+\frac{\text{Ns}^2 \text{s1}^3}{2}-\frac{\text{Ns} \text{s1}^6}{6}+\frac{\text{Ns} \text{s1}^3}{3}
PL[s,0,t,o]=\frac{1}{18} \text{Nf}^2 \text{Ns}^6 o t s^6-\frac{1}{6} \text{Nf}^2 \text{Ns}^5 o t s^6+\frac{1}{18} \text{Nf}^2 \text{Ns}^4 o t s^6+\frac{1}{6} \text{Nf}^2 \text{Ns}^3 o t s^6-\frac{1}{9} \text{Nf}^2 \text{Ns}^2 o t s^6+\frac{11}{240} \text{Nf}^3 \text{Ns}^5 o^2 t s^5-\frac{1}{240} \text{Nf}^2 \text{Ns}^5 o^2 t s^5-\frac{1}{24} \text{Nf}^3 \text{Ns}^4 o^2 t s^5+\frac{1}{8} \text{Nf}^2 \text{Ns}^4 o^2 t s^5+\frac{5}{48} \text{Nf}^3 \text{Ns}^3 o^2 t s^5-\frac{7}{48} \text{Nf}^2 \text{Ns}^3 o^2 t s^5-\frac{5}{24} \text{Nf}^3 \text{Ns}^2 o^2 t s^5+\frac{1}{8} \text{Nf}^2 \text{Ns}^2 o^2 t s^5+\frac{1}{10} \text{Nf}^3 \text{Ns} o^2 t s^5-\frac{1}{10} \text{Nf}^2 \text{Ns} o^2 t s^5+\frac{3}{16} \text{Nf}^3 \text{Ns}^4 o t^2 s^4+\frac{5}{48} \text{Nf}^2 \text{Ns}^4 o t^2 s^4-\frac{1}{8} \text{Nf}^3 \text{Ns}^3 o t^2 s^4-\frac{1}{8} \text{Nf}^2 \text{Ns}^3 o t^2 s^4+\frac{1}{16} \text{Nf}^3 \text{Ns}^2 o t^2 s^4+\frac{7}{48} \text{Nf}^2 \text{Ns}^2 o t^2 s^4-\frac{1}{8} \text{Nf}^3 \text{Ns} o t^2 s^4-\frac{1}{8} \text{Nf}^2 \text{Ns} o t^2 s^4+\frac{29}{144} \text{Nf}^4 \text{Ns}^2 o^3 t s^4-\frac{1}{16} \text{Nf}^3 \text{Ns}^2 o^3 t s^4-\frac{5}{36} \text{Nf}^2 \text{Ns}^2 o^3 t s^4-\frac{1}{8} \text{Nf}^4 \text{Ns} o^3 t s^4+\frac{1}{8} \text{Nf}^3 \text{Ns} o^3 t s^4+\frac{1}{12} \text{Nf}^4 \text{Ns}^3 o^2 t^2 s^3-\frac{1}{12} \text{Nf}^2 \text{Ns}^3 o^2 t^2 s^3-\frac{1}{4} \text{Nf}^4 \text{Ns}^2 o^2 t^2 s^3+\frac{1}{4} \text{Nf}^2 \text{Ns}^2 o^2 t^2 s^3+\frac{1}{6} \text{Nf}^4 \text{Ns} o^2 t^2 s^3-\frac{1}{6} \text{Nf}^2 \text{Ns} o^2 t^2 s^3+\frac{1}{3} \text{Nf}^2 \text{Ns}^3 o t s^3-\frac{1}{3} \text{Nf}^2 \text{Ns} o t s^3+\frac{1}{6} \text{Nf}^4 \text{Ns}^2 o t^3 s^2-\frac{1}{6} \text{Nf}^2 \text{Ns}^2 o t^3 s^2-\frac{1}{6} \text{Nf}^4 \text{Ns} o t^3 s^2+\frac{1}{6} \text{Nf}^2 \text{Ns} o t^3 s^2+\frac{1}{2} \text{Nf}^3 \text{Ns}^2 o^2 t s^2-\frac{1}{2} \text{Nf}^2 \text{Ns} o^2 t s^2+\frac{1}{2} \text{Nf}^3 \text{Ns} o t^2 s-\frac{1}{2} \text{Nf}^2 \text{Ns} o t^2 s
PL[s1,s2,t,o]=...
For Sp(2)
Same, because Sp(n) adjoint. rep. is symmetric tensor.
For SO(4)
PL[s_1,s_2,0]=2 \text{s1}^4 \text{s2}^4+\text{s1}^4 \text{s2}^3+2 \text{s1}^4 \text{s2}^2+\text{s1}^4+\text{s1}^3 \text{s2}^4+2 \text{s1}^3 \text{s2}^3+\text{s1}^3 \text{s2}^2+\text{s1}^3 \text{s2}+\text{s1}^3+2 \text{s1}^2 \text{s2}^4+\text{s1}^2 \text{s2}^3+3 \text{s1}^2 \text{s2}^2+\text{s1}^2 \text{s2}+\text{s1}^2+\text{s1} \text{s2}^3+\text{s1} \text{s2}^2+\text{s1} \text{s2}+\text{s1}+\text{s2}^4+\text{s2}^3+\text{s2}^2+\text{s2}
PL[0,0,t]=\frac{N^4 t^4}{24}-\frac{N^3 t^4}{4}+\frac{11 N^2 t^4}{24}+\frac{N^2 t^2}{2}-\frac{N t^4}{4}+\frac{N t^2}{2}
PL[s1,0,t]'=\frac{1}{8} N^4 \text{s1}^4 t^4+\frac{1}{6} N^4 \text{s1}^3 t^4+\frac{5}{24} N^4 \text{s1}^2 t^4+\frac{1}{8} N^4 \text{s1} t^4+\frac{1}{4} N^3 \text{s1}^4 t^4-\frac{1}{4} N^3 \text{s1}^2 t^4-\frac{1}{4} N^3 \text{s1} t^4-\frac{1}{8} N^2 \text{s1}^4 t^4-\frac{1}{6} N^2 \text{s1}^3 t^4+\frac{1}{2} N^2 \text{s1}^3 t^2-\frac{5}{24} N^2 \text{s1}^2 t^4+\frac{1}{2} N^2 \text{s1}^2 t^2-\frac{1}{8} N^2 \text{s1} t^4+\frac{1}{2} N^2 \text{s1} t^2-\frac{1}{4} N \text{s1}^4 t^4+\frac{1}{2} N \text{s1}^3 t^2+\frac{1}{4} N \text{s1}^2 t^4+\frac{1}{2} N \text{s1}^2 t^2+\frac{1}{4} N \text{s1} t^4+\frac{1}{2} N \text{s1} t^2
PL[s1,s2,t]'=\frac{3}{8} N^4 \text{s1}^2 \text{s2} t^4+\frac{1}{3} N^4 \text{s1} \text{s2} t^4+\frac{1}{4} N^3 \text{s1}^2 \text{s2} t^4+\frac{1}{2} N^2 \text{s1}^4 \text{s2}^4 t^2+7 N^2 \text{s1}^4 \text{s2}^3 t^2+6 N^2 \text{s1}^4 \text{s2}^2 t^2+\frac{5}{2} N^2 \text{s1}^4 \text{s2} t^2+7 N^2 \text{s1}^3 \text{s2}^4 t^2+9 N^2 \text{s1}^3 \text{s2}^3 t^2+\frac{13}{2} N^2 \text{s1}^3 \text{s2}^2 t^2+3 N^2 \text{s1}^3 \text{s2} t^2+6 N^2 \text{s1}^2 \text{s2}^4 t^2+\frac{13}{2} N^2 \text{s1}^2 \text{s2}^3 t^2+\frac{9}{2} N^2 \text{s1}^2 \text{s2}^2 t^2-\frac{3}{8} N^2 \text{s1}^2 \text{s2} t^4+\frac{5}{2} N^2 \text{s1}^2 \text{s2} t^2+\frac{5}{2} N^2 \text{s1} \text{s2}^4 t^2+3 N^2 \text{s1} \text{s2}^3 t^2+\frac{5}{2} N^2 \text{s1} \text{s2}^2 t^2-\frac{1}{3} N^2 \text{s1} \text{s2} t^4+\frac{3}{2} N^2 \text{s1} \text{s2} t^2+\frac{1}{2} N \text{s1}^4 \text{s2}^4 t^2+N \text{s1}^4 \text{s2}^3 t^2+\frac{1}{2} N \text{s1}^4 \text{s2} t^2+N \text{s1}^3 \text{s2}^4 t^2-N \text{s1}^3 \text{s2}^3 t^2+\frac{1}{2} N \text{s1}^3 \text{s2}^2 t^2-N \text{s1}^3 \text{s2} t^2+\frac{1}{2} N \text{s1}^2 \text{s2}^3 t^2+\frac{1}{2} N \text{s1}^2 \text{s2}^2 t^2-\frac{1}{4} N \text{s1}^2 \text{s2} t^4+\frac{1}{2} N \text{s1}^2 \text{s2} t^2+\frac{1}{2} N \text{s1} \text{s2}^4 t^2-N \text{s1} \text{s2}^3 t^2+\frac{1}{2} N \text{s1} \text{s2}^2 t^2-\frac{1}{2} N \text{s1} \text{s2} t^2
For SO(5)
PL[s1,s2,0]=2 \text{s1}^6 \text{s2}^6+2 \text{s1}^6 \text{s2}^5+2 \text{s1}^6 \text{s2}^4+\text{s1}^6 \text{s2}^3+\text{s1}^6 \text{s2}^2+2 \text{s1}^5 \text{s2}^6+2 \text{s1}^5 \text{s2}^5+2 \text{s1}^5 \text{s2}^4+\text{s1}^5 \text{s2}^3+\text{s1}^5 \text{s2}^2+\text{s1}^5+2 \text{s1}^4 \text{s2}^6+2 \text{s1}^4 \text{s2}^5+3 \text{s1}^4 \text{s2}^4+2 \text{s1}^4 \text{s2}^3+2 \text{s1}^4 \text{s2}^2+\text{s1}^4 \text{s2}+\text{s1}^4+\text{s1}^3 \text{s2}^6+\text{s1}^3 \text{s2}^5+2 \text{s1}^3 \text{s2}^4+2 \text{s1}^3 \text{s2}^3+2 \text{s1}^3 \text{s2}^2+\text{s1}^3 \text{s2}+\text{s1}^3+\text{s1}^2 \text{s2}^6+\text{s1}^2 \text{s2}^5+2 \text{s1}^2 \text{s2}^4+2 \text{s1}^2 \text{s2}^3+2 \text{s1}^2 \text{s2}^2+\text{s1}^2 \text{s2}+\text{s1}^2+\text{s1} \text{s2}^4+\text{s1} \text{s2}^3+\text{s1} \text{s2}^2+\text{s1} \text{s2}+\text{s1}+\text{s2}^5+\text{s2}^4+\text{s2}^3+\text{s2}^2+\text{s2}
PL[0,0,t]=\frac{N^5 t^5}{120}-\frac{N^4 t^5}{12}+\frac{7 N^3 t^5}{24}-\frac{5 N^2 t^5}{12}+\frac{N^2 t^2}{2}+\frac{N t^5}{5}+\frac{N t^2}{2}
PL[s,0,t]=\frac{1}{6} N^5 s^6 t^5+\frac{11}{60} N^5 s^5 t^5+\frac{1}{6} N^5 s^4 t^5+\frac{1}{8} N^5 s^3 t^5+\frac{3}{40} N^5 s^2 t^5+\frac{1}{30} N^5 s t^5+\frac{1}{6} N^4 s^6 t^5-\frac{1}{12} N^4 s^6 t^4-\frac{1}{12} N^4 s^5 t^4-\frac{1}{6} N^4 s^4 t^5-\frac{1}{12} N^4 s^4 t^4-\frac{1}{4} N^4 s^3 t^5-\frac{1}{4} N^4 s^2 t^5-\frac{1}{6} N^4 s t^5-\frac{1}{6} N^3 s^6 t^5-\frac{7}{12} N^3 s^5 t^5-\frac{1}{6} N^3 s^4 t^5-\frac{1}{8} N^3 s^3 t^5+\frac{1}{8} N^3 s^2 t^5+\frac{1}{6} N^3 s t^5-\frac{1}{6} N^2 s^6 t^5+\frac{1}{12} N^2 s^6 t^4+\frac{1}{12} N^2 s^5 t^4+\frac{1}{6} N^2 s^4 t^5+\frac{1}{12} N^2 s^4 t^4+\frac{1}{2} N^2 s^4 t^2+\frac{1}{4} N^2 s^3 t^5+\frac{1}{2} N^2 s^3 t^2+\frac{1}{4} N^2 s^2 t^5+\frac{1}{2} N^2 s^2 t^2+\frac{1}{6} N^2 s t^5+\frac{1}{2} N^2 s t^2+\frac{2}{5} N s^5 t^5+\frac{1}{2} N s^4 t^2+\frac{1}{2} N s^3 t^2-\frac{1}{5} N s^2 t^5+\frac{1}{2} N s^2 t^2-\frac{1}{5} N s t^5+\frac{1}{2} N s t^2
PL[s1,s2,t]=\frac{67}{6} N^3 \text{s2}^3 t^3 \text{s1}^6+\frac{15}{2} N^2 \text{s2}^3 t^3 \text{s1}^6+\frac{4}{3} N \text{s2}^3 t^3 \text{s1}^6+\frac{20}{3} N^3 \text{s2}^2 t^3 \text{s1}^6+2 N^2 \text{s2}^2 t^3 \text{s1}^6+\frac{1}{3} N \text{s2}^2 t^3 \text{s1}^6+\frac{11}{6} N^3 \text{s2} t^3 \text{s1}^6+\frac{1}{2} N^2 \text{s2} t^3 \text{s1}^6-\frac{1}{3} N \text{s2} t^3 \text{s1}^6+\frac{23}{2} N^2 \text{s2}^5 t^2 \text{s1}^6-\frac{1}{2} N \text{s2}^5 t^2 \text{s1}^6+17 N^2 \text{s2}^4 t^2 \text{s1}^6-2 N \text{s2}^4 t^2 \text{s1}^6+\frac{23}{2} N^2 \text{s2}^3 t^2 \text{s1}^6-\frac{3}{2} N \text{s2}^3 t^2 \text{s1}^6+\frac{9}{2} N^2 \text{s2}^2 t^2 \text{s1}^6-\frac{1}{2} N \text{s2}^2 t^2 \text{s1}^6+N^2 \text{s2} t^2 \text{s1}^6+32 N \text{s2}^6 t \text{s1}^6+31 N \text{s2}^5 t \text{s1}^6+21 N \text{s2}^4 t \text{s1}^6+9 N \text{s2}^3 t \text{s1}^6+3 N \text{s2}^2 t \text{s1}^6+15 N^3 \text{s2}^4 t^3 \text{s1}^5+11 N^2 \text{s2}^4 t^3 \text{s1}^5+2 N \text{s2}^4 t^3 \text{s1}^5+\frac{43}{3} N^3 \text{s2}^3 t^3 \text{s1}^5+4 N^2 \text{s2}^3 t^3 \text{s1}^5-\frac{1}{3} N \text{s2}^3 t^3 \text{s1}^5+\frac{41}{6} N^3 \text{s2}^2 t^3 \text{s1}^5+\frac{1}{2} N^2 \text{s2}^2 t^3 \text{s1}^5-\frac{1}{3} N \text{s2}^2 t^3 \text{s1}^5+\frac{11}{6} N^3 \text{s2} t^3 \text{s1}^5-\frac{1}{2} N^2 \text{s2} t^3 \text{s1}^5-\frac{1}{3} N \text{s2} t^3 \text{s1}^5+\frac{23}{2} N^2 \text{s2}^6 t^2 \text{s1}^5-\frac{1}{2} N \text{s2}^6 t^2 \text{s1}^5+22 N^2 \text{s2}^5 t^2 \text{s1}^5-3 N \text{s2}^5 t^2 \text{s1}^5+\frac{39}{2} N^2 \text{s2}^4 t^2 \text{s1}^5-\frac{5}{2} N \text{s2}^4 t^2 \text{s1}^5+\frac{25}{2} N^2 \text{s2}^3 t^2 \text{s1}^5-\frac{5}{2} N \text{s2}^3 t^2 \text{s1}^5+\frac{11}{2} N^2 \text{s2}^2 t^2 \text{s1}^5-\frac{1}{2} N \text{s2}^2 t^2 \text{s1}^5+\frac{3}{2} N^2 \text{s2} t^2 \text{s1}^5-\frac{1}{2} N \text{s2} t^2 \text{s1}^5+31 N \text{s2}^6 t \text{s1}^5+25 N \text{s2}^5 t \text{s1}^5+16 N \text{s2}^4 t \text{s1}^5+7 N \text{s2}^3 t \text{s1}^5+2 N \text{s2}^2 t \text{s1}^5+\frac{4}{15} N^5 \text{s2} t^5 \text{s1}^4+\frac{5}{6} N^4 \text{s2} t^5 \text{s1}^4-\frac{2}{3} N^3 \text{s2} t^5 \text{s1}^4-\frac{5}{6} N^2 \text{s2} t^5 \text{s1}^4+\frac{2}{5} N \text{s2} t^5 \text{s1}^4+\frac{53}{3} N^3 \text{s2}^4 t^3 \text{s1}^4+6 N^2 \text{s2}^4 t^3 \text{s1}^4+\frac{1}{3} N \text{s2}^4 t^3 \text{s1}^4+\frac{73}{6} N^3 \text{s2}^3 t^3 \text{s1}^4+\frac{3}{2} N^2 \text{s2}^3 t^3 \text{s1}^4-\frac{2}{3} N \text{s2}^3 t^3 \text{s1}^4+\frac{16}{3} N^3 \text{s2}^2 t^3 \text{s1}^4-\frac{1}{3} N \text{s2}^2 t^3 \text{s1}^4+\frac{3}{2} N^3 \text{s2} t^3 \text{s1}^4-\frac{1}{2} N^2 \text{s2} t^3 \text{s1}^4+17 N^2 \text{s2}^6 t^2 \text{s1}^4-2 N \text{s2}^6 t^2 \text{s1}^4+\frac{39}{2} N^2 \text{s2}^5 t^2 \text{s1}^4-\frac{5}{2} N \text{s2}^5 t^2 \text{s1}^4+\frac{33}{2} N^2 \text{s2}^4 t^2 \text{s1}^4-\frac{3}{2} N \text{s2}^4 t^2 \text{s1}^4+11 N^2 \text{s2}^3 t^2 \text{s1}^4-N \text{s2}^3 t^2 \text{s1}^4+\frac{11}{2} N^2 \text{s2}^2 t^2 \text{s1}^4+\frac{1}{2} N \text{s2}^2 t^2 \text{s1}^4+2 N^2 \text{s2} t^2 \text{s1}^4+21 N \text{s2}^6 t \text{s1}^4+16 N \text{s2}^5 t \text{s1}^4+11 N \text{s2}^4 t \text{s1}^4+5 N \text{s2}^3 t \text{s1}^4+2 N \text{s2}^2 t \text{s1}^4+\frac{13}{120} N^5 \text{s2}^2 t^5 \text{s1}^3+\frac{25}{12} N^4 \text{s2}^2 t^5 \text{s1}^3-\frac{41}{24} N^3 \text{s2}^2 t^5 \text{s1}^3-\frac{13}{12} N^2 \text{s2}^2 t^5 \text{s1}^3+\frac{3}{5} N \text{s2}^2 t^5 \text{s1}^3+\frac{7}{20} N^5 \text{s2} t^5 \text{s1}^3+\frac{1}{6} N^4 \text{s2} t^5 \text{s1}^3-\frac{3}{4} N^3 \text{s2} t^5 \text{s1}^3-\frac{1}{6} N^2 \text{s2} t^5 \text{s1}^3+\frac{2}{5} N \text{s2} t^5 \text{s1}^3+\frac{73}{6} N^3 \text{s2}^4 t^3 \text{s1}^3+\frac{3}{2} N^2 \text{s2}^4 t^3 \text{s1}^3-\frac{2}{3} N \text{s2}^4 t^3 \text{s1}^3+\frac{23}{3} N^3 \text{s2}^3 t^3 \text{s1}^3-N^2 \text{s2}^3 t^3 \text{s1}^3-\frac{2}{3} N \text{s2}^3 t^3 \text{s1}^3+\frac{10}{3} N^3 \text{s2}^2 t^3 \text{s1}^3-N^2 \text{s2}^2 t^3 \text{s1}^3-\frac{1}{3} N \text{s2}^2 t^3 \text{s1}^3+N^3 \text{s2} t^3 \text{s1}^3-N^2 \text{s2} t^3 \text{s1}^3+\frac{23}{2} N^2 \text{s2}^6 t^2 \text{s1}^3-\frac{3}{2} N \text{s2}^6 t^2 \text{s1}^3+\frac{25}{2} N^2 \text{s2}^5 t^2 \text{s1}^3-\frac{5}{2} N \text{s2}^5 t^2 \text{s1}^3+11 N^2 \text{s2}^4 t^2 \text{s1}^3-N \text{s2}^4 t^2 \text{s1}^3+8 N^2 \text{s2}^3 t^2 \text{s1}^3-N \text{s2}^3 t^2 \text{s1}^3+\frac{9}{2} N^2 \text{s2}^2 t^2 \text{s1}^3+\frac{1}{2} N \text{s2}^2 t^2 \text{s1}^3+2 N^2 \text{s2} t^2 \text{s1}^3+9 N \text{s2}^6 t \text{s1}^3+7 N \text{s2}^5 t \text{s1}^3+5 N \text{s2}^4 t \text{s1}^3+2 N \text{s2}^3 t \text{s1}^3+N \text{s2}^2 t \text{s1}^3+\frac{13}{120} N^5 \text{s2}^3 t^5 \text{s1}^2+\frac{25}{12} N^4 \text{s2}^3 t^5 \text{s1}^2-\frac{41}{24} N^3 \text{s2}^3 t^5 \text{s1}^2-\frac{13}{12} N^2 \text{s2}^3 t^5 \text{s1}^2+\frac{3}{5} N \text{s2}^3 t^5 \text{s1}^2+\frac{17}{40} N^5 \text{s2}^2 t^5 \text{s1}^2+\frac{1}{4} N^4 \text{s2}^2 t^5 \text{s1}^2-\frac{9}{8} N^3 \text{s2}^2 t^5 \text{s1}^2+\frac{1}{4} N^2 \text{s2}^2 t^5 \text{s1}^2+\frac{1}{5} N \text{s2}^2 t^5 \text{s1}^2+\frac{31}{120} N^5 \text{s2} t^5 \text{s1}^2-\frac{1}{4} N^4 \text{s2} t^5 \text{s1}^2-\frac{11}{24} N^3 \text{s2} t^5 \text{s1}^2+\frac{1}{4} N^2 \text{s2} t^5 \text{s1}^2+\frac{1}{5} N \text{s2} t^5 \text{s1}^2+\frac{16}{3} N^3 \text{s2}^4 t^3 \text{s1}^2-\frac{1}{3} N \text{s2}^4 t^3 \text{s1}^2+\frac{10}{3} N^3 \text{s2}^3 t^3 \text{s1}^2-N^2 \text{s2}^3 t^3 \text{s1}^2-\frac{1}{3} N \text{s2}^3 t^3 \text{s1}^2+\frac{3}{2} N^3 \text{s2}^2 t^3 \text{s1}^2-\frac{1}{2} N^2 \text{s2}^2 t^3 \text{s1}^2+\frac{1}{2} N^3 \text{s2} t^3 \text{s1}^2-\frac{1}{2} N^2 \text{s2} t^3 \text{s1}^2+\frac{9}{2} N^2 \text{s2}^6 t^2 \text{s1}^2-\frac{1}{2} N \text{s2}^6 t^2 \text{s1}^2+\frac{11}{2} N^2 \text{s2}^5 t^2 \text{s1}^2-\frac{1}{2} N \text{s2}^5 t^2 \text{s1}^2+\frac{11}{2} N^2 \text{s2}^4 t^2 \text{s1}^2+\frac{1}{2} N \text{s2}^4 t^2 \text{s1}^2+\frac{9}{2} N^2 \text{s2}^3 t^2 \text{s1}^2+\frac{1}{2} N \text{s2}^3 t^2 \text{s1}^2+3 N^2 \text{s2}^2 t^2 \text{s1}^2+N \text{s2}^2 t^2 \text{s1}^2+\frac{3}{2} N^2 \text{s2} t^2 \text{s1}^2+\frac{1}{2} N \text{s2} t^2 \text{s1}^2+3 N \text{s2}^6 t \text{s1}^2+2 N \text{s2}^5 t \text{s1}^2+2 N \text{s2}^4 t \text{s1}^2+N \text{s2}^3 t \text{s1}^2+N \text{s2}^2 t \text{s1}^2+\frac{7}{20} N^5 \text{s2}^3 t^5 \text{s1}+\frac{1}{6} N^4 \text{s2}^3 t^5 \text{s1}-\frac{3}{4} N^3 \text{s2}^3 t^5 \text{s1}-\frac{1}{6} N^2 \text{s2}^3 t^5 \text{s1}+\frac{2}{5} N \text{s2}^3 t^5 \text{s1}+\frac{1}{8} N^5 \text{s2} t^5 \text{s1}-\frac{1}{4} N^4 \text{s2} t^5 \text{s1}-\frac{1}{8} N^3 \text{s2} t^5 \text{s1}+\frac{1}{4} N^2 \text{s2} t^5 \text{s1}+\frac{3}{2} N^3 \text{s2}^4 t^3 \text{s1}-\frac{1}{2} N^2 \text{s2}^4 t^3 \text{s1}+N^3 \text{s2}^3 t^3 \text{s1}-N^2 \text{s2}^3 t^3 \text{s1}+\frac{1}{2} N^3 \text{s2}^2 t^3 \text{s1}-\frac{1}{2} N^2 \text{s2}^2 t^3 \text{s1}+\frac{1}{6} N^3 \text{s2} t^3 \text{s1}-\frac{1}{2} N^2 \text{s2} t^3 \text{s1}+\frac{1}{3} N \text{s2} t^3 \text{s1}+N^2 \text{s2}^6 t^2 \text{s1}+\frac{3}{2} N^2 \text{s2}^5 t^2 \text{s1}-\frac{1}{2} N \text{s2}^5 t^2 \text{s1}+2 N^2 \text{s2}^4 t^2 \text{s1}+2 N^2 \text{s2}^3 t^2 \text{s1}+\frac{3}{2} N^2 \text{s2}^2 t^2 \text{s1}+\frac{1}{2} N \text{s2}^2 t^2 \text{s1}+N^2 \text{s2} t^2 \text{s1}
For SU(4),
Carten matrix is \begin{pmatrix}2&-1&0\\ -1& 2& -1\\ 0& -1& 2\end{pmatrix}
Weight diagram of symmetric 2 tensor is
\chi_{cnsy}=z_3^2+z_2+z_3^3z_1/z_2^2+z_3^2z_2/z_1^2+z_3^4z_1^2/z_2^4+z_3z_2^3z_1+1/(z_3^2z_2^2)+z_2^2z_1^2+z_3^2z_2^2/z_1^4+z_3^3/(z_2z_1)
Maximum rank
rank 4 is possible.
For SU(5),
But strange number appear..
For F4,
[Georgi] 27.5 Anomalies
There is a peculiar constrain on unified theories that follows from the structure of quantum field theory, the mathematical language in which all these theoreis are formulated. The constraint is that if the creation operators for all the right-handed spin 1/2 particles transform according to a representation generated by matrices T^R_a, then T^R_a must satisfy \begin{align}\mbox{Tr}\left( \{T^R_a,T^R_b\}T^R_c\right)=0.\end{align}
You can show that this symmetric trace of three generators vanishes for all simple Lie algebras except SU(N) for N\ge 3 (and SO(6) which is equivalent to SU(4)). In SU(N), suppose that T^D_a generate the representation D of SU(N). Then define the invariant tensor d^{abc} as follows: \begin{align}\mbox{Tr}\left( \{T^{D^1}_a,T^{D^1}_b\}T^{D^1}_c\right)\equiv d^{abc}\end{align} for the defining representation D^1. Then, for any representation, you can show that \begin{align}\mbox{Tr}\left( \{T^D_a,T^D_b\}T^D_c\right)=A(D)d^{abc},\end{align} where A(D) is an integer, which is calle the anomaly of the representation D. Thus (23) is the statement that the creation operators for the right handed particles transform according to an anomaly free representation of the unifying group.
You can easily derive the following preperties of A(D) \begin{align}A(\bar{D})=-A(D)\\ A(D_1\oplus D_2)=A(D_1)+A(D_2)\\ A(D_1\otimes D_2)=\mbox{dim}(D_1)A(D_2)+\mbox{dim}(D_2)A(D_1)\end{align}
For SU(N),
A(N)=-A(\bar{N})=1
A(N^2-1)=0
A(\frac{N(N+1)}{2})=-A(\bar{\frac{N(N+1)}{2}})=N-4
For E7,
E7(7) symmetry in perturbatively quantised N=8 supergravity (hal.science)
Reference
[0812.2315] The Hilbert Series of Adjoint SQCD (arxiv.org)
[hep-th/9801182] Lectures on D-branes, Gauge Theory and M(atrices) (arxiv.org)
[hep-th/0701063] Counting Gauge Invariants: the Plethystic Program (arxiv.org)
[1603.01049] Statistical mechanics approach in the counting of integer partitions (arxiv.org)
[2010.08560] EFT Asymptotics: the Growth of Operator Degeneracy (arxiv.org)
[1112.5454] New results for the SQCD Hilbert series (arxiv.org)
[1706.08520] Operator bases, S-matrices, and their partition functions (arxiv.org)
(Bootstrap, I don't know.)
[1607.06109] The S-matrix Bootstrap I: QFT in AdS (arxiv.org)
[1607.06110] The S-matrix Bootstrap II: Two Dimensional Amplitudes (arxiv.org)
[1708.06765] The S-matrix Bootstrap III: Higher Dimensional Amplitudes (arxiv.org)
[1905.06905] The S-matrix Bootstrap IV: Multiple Amplitudes (arxiv.org)
[1803.10233] The Analytic Functional Bootstrap I: 1D CFTs and 2D S-Matrices (arxiv.org)
[2006.08221] An Analytical Toolkit for the S-matrix Bootstrap (arxiv.org)