Indivisual Research

My indivisual is about finding invariant representation (scalar) by using partition function(Hilbert series) and integral over group.


Starting paper is Hilbert Series for Adjoint SQCD.

Next page is Mathematica with FORM.


Prerequisite Knowledge

I used repersentation theory for Lie group.

To calculate, i also use residue theorem.


Method

They use Mathematica to calculate integral over the group.

Simple Mathematica Code example is here.


su3cfu[z1_, z2_] := z1 + z2/z1 + 1/z2 
su3caf[z1_, z2_] := z2 + z1/z2 + 1/z1
su3cad[z1_, z2_] := z1 z2 + z2^2/z1 + z1^2/z2 + 2 + z1/z2^2 + z2/z1^2 + 1/(z1 z2)
su3h[z1_, z2_] :=  1/( z1 z2) (1 - z1 z2) (1 - z1^2/z2) (1 - z2^2/z1)
Nf:=6
PE[z1_,z2_, t_, s_,o_] = E^Sum[(Nf*su3cfu[z1^n,z2^n]*t^n +Nf* su3caf[z1^n,z2^n]*o^n+su3cad[z1^n,z2^n]*s^n)/n, {n,1,6}]//Simplify
expan[z1_,z2_,s_,t_,o_]=Series[PE[z1,z2,t,s,o]*su3h[z1,z2],{o,0,3},{t,0,3},{s,0,6}]//Normal//Expand
g[s_,t_, o_] = SeriesCoefficient[SeriesCoefficient[expan[z1,z2,s,t,o]*z1*z2,{z1,0,0}],{z2,0,0}]//Expand
PL[t_,s_,o_] =Series[ Sum[(MoebiusMu[n]*Sum[-(1-g[s^n,t^n,o^n])^k/k,{k,1,10}])/n, {n, 1,10}],{o,0,3},{t,0,3},{s,0,6}]//Normal//Simplify//Expand



They use $1$ adjoint representation, $N_f$ fundamental representation, $N_f$ antifundamental representation.




Dimension of SU(N) tensor

Let's compute with Young Tableaux.

Highest order coefficient is always positive.

Order of $N$ is same number as  sum of blocks.

Example

$[1,0,\cdots,0]=N$

$[0,1,0,\cdots,0]=N^2/2+N/2$

$[0,0,1,0,\cdots,0]=_NC_3=N^3/6-N^2/2+N/6$

$[0,0,0,1,0\cdots,0]=_NC_4=N^4/24-N^3/4+11N^2/24-N/4$


$[1,1,0,\cdots,0]=N^3/3-N/3$

$[1,0,1,0,\cdots,0]=$


$[1,1,1,0\cdots,0]=$


$[2,0,\cdots,0]=N^2/2-N/2$


$[3,0,\cdots,0]=N^3/6+N^2/2+N/6$


$[0,2,0,\cdots,0]=$


$[2,1,0,\cdots,0]=$



$[4,0,\cdots,0]=$



Application

2 adjoint

Let's think $2$ adjoint representation(in $SU(N)$, $[1,0,\cdots,0,1]$), $N_f$ fundamental representation, $N_f$ antifundamental representation.

For $SU(2)$, (under order 6)

$$PL[g^{(N,SU(2))}(s_1,s_2,t)]=(s_1^2+s_1s_2+s_2^2)+[N_f(2N_f+1)]t^2+([N_f(2N_f-1)]+[N_f(2N_f+1)](s_1+s_2+s_1s_2))t^2-\cdots$$


For $SU(3)$, (under order 6)

$$PL[g^{(N,SU(3))}(s_1,s_2,t,o)]=[N_f^2]to+(s_1s_2+s_1^2+s_2^2)+[N_f^2](s_1+s_2)to+[N_f(N_f-1)(N_f-2)/6](t^3+o^3)+(s_1^3+s_1^2s_2+s_1s_2^2)+[N_f^2](s_1^2+2s_1s_2+s_2^2)to+[N_f(N_f+1)(N_f-1)/3](s_1+s_2)(t^3+o^3)+s_1^2s_2^2+([N_f(N_f+1)(N_f-1)/3]s_1^2+[N_f(N_f+1)(5N_f-2)/6]s_1s_2+[N_f(N_f+1)(N_f-1)/3]s_2^2)(t^3+o^3) +[N_f^2](2s_1s_2^2+2s_1^2s_2)to+([N_f(N_f+1)(N_f+2)/6]s_1^3+[N_f^2(N_f+1)]s_1^2s_2+[N_f^2(N_f+1)]s_1s_2^2+[N_f(N_f+1)(N_f+2)/6]s_2^3)(t^3+o^3)+[N_f^2](s_1^3s_2+2s_1^2s_2^2+s_1s_2^3)ot+s_1^3s_2^3$$


$[N_f^2]:\ [1,0,\cdots,0]\times [0,\cdots,0,1]$

$[N_f(N_f-1)(N_f-2)/6]:\ [0,0,1,0\cdots,0]$

$[N_f(N_f+1)(N_f-1)/3]:\ [1,1,0,\cdots,0]$

$[N_f(N_f+1)(5N_f-2)/6]:\ [3,0,\cdots,0]+4[1,1,0,\cdots,0]$

$[N_f(N_f+1)(N_f+2)/6]:\ [3,0,\cdots,0]$

$[N_f^2(N_f+1)]:\ 2[3,0,\cdots,0]+4[1,1,0,\cdots,0]$


Then. new terms arise!

Blended Casimir Operator: $s_1^2s_2$, $s_1^3s_2^3$

Blended Adjoint Meason: $s_1s_2t\tilde{t}$, $s_1^3s_2t\tilde{t}$

Blended Adjoint Baryon 1: $s_1s_2t^3$: 

Blended Adjoint Baryon 2: $s_1^2s_2t^3$: 


Interpretation: $s_1$ and $s_2$ have $SU(2)$ symmtery. 


For $SU(4)$, PL is complicated.

PL[t_,s1_,s2_,o_]=

Series[Sum[(MoebiusMu[n]*Sum[-(1-g[s1^n,s2^n,t^n,o^n])^k/k,

{k,1,Floor[6/n]}])/n,{n,1,6}],{o,0,4},{t,0,4},{s1,0,8},{s2,0,8}]//Normal//Expand


Goal is order $s^6t^4$.

Order별로 나눠서 table로 대입?



For $Sp(2)$, (under order 8)

$PL[s_1,0,t]'=s_1^2+s_1^4+(2N^2-N)t^2+(2N^2+N)s_1t^2+(2N^2-N)s_1^2t^2+(2N^2+N)s_1^3t^2+...$

$PL[s_1,s_2,0]'=(s_1^2+s_1s_2+s_2^2)+(s_1^4+s_1^3s_2+2s_1^2s_2+s_1s_2^3+s_2^4)+(s_1^4s_2^2+s_1^3s_2^3+s_1^2s_2^4)+(s_1^4s_2^3+s_1^3s_2^4)+(s_1^6s_2^3+s_1^5s_2^4+s_1^4s_2^5+s_1^3s_2^6)$

$PL[s_1,s_2,t]'=4N^2s_1s_2t^2+(6N^2+N)(s_1^2s_2+s_1s_2^2)t^2+((6N^2+N)s_1^3s_2+8N^2s_1^2s_2^2+(6N^2+N)s_1s_2^3)t^2+(4N^2s_1^4s_2+(10N^2+N)s_1^3s_2^2+(10N^2+N)s_1^2s_2^3+4N^2s_1s_2^4)t^2+((4N^2+N)s_1^5s_2+(8N^2+2N)s_1^4s_2^2+(12N^2+4N)s_1^3s_2^3+(8N^2+2N)s_1^2s_2^4+Ns_1^5+(4N^2+N)s_1s_2^5)t^2+(4N^2s_1^5s_2^2+8N^2s_1^4s_2^3+8N^2s_1^3s_2^3+4N^2s_1^2s_2^4)t^2+((2N^2+N)s_1^6s_2^2+(4N^2+2N)s_1^4s_2^4+(2N^2+N)s_1^2s_2^6)t^2$


Casimir invariants: $s^{2k}$    :$u_{2k}=Tr(\phi^{2k})$ ($k=1,2,\cdots,N_c$) $1$dim

Measons: $t^2$                   :$M^{ij}=J^{ab}Q^i_aQ^j_b$ ($a,b=,1,2,\cdots,2N_c$) $N(2N-1)$dim

Even adjoint measons: $s^{2l}t^2 :$(A_{2l})^{ij}=J^{a_1b_1}J^{c_1b_2}J^{c_2b_3}\cdots J^{c_{2l-1}b_{2l}}J^{c_{2l}a_{2l}}Q^i_{a_1}\phi_{b_1c_2}\phi_{b_2v_2}\cdots \phi_{b_{2l}c_{2l}Q^j_{a_{2l}}$ $N(2N-1)$dim

Odd adjoint measons: $s^{2k-1}t^2$ :$(A_{2k-1})^{ij}=J^{a_1b_1}J^{c_1b_2}\cdots J^{c_{2k-1}a_{2k-1}}Q^i_{a_1}\phi_{b_1c_2}\phi_{b_2c_2}\cdots \phi_{b_{2k-1}c_{2k-1}}Q^j_{a_{2k-1}}$ $N(2N+1)$ dim


Blended Casimir invariants: $s_1^{k_1}s_2^{k_2}$ $(k_1,k_2)=(2,0),(1,1),(0,2),\ (4,0),(3,1),(1,3),(0,4),\ (4,2),(3,3),(2,4)\ (4,3),(3,4),\ (6,3),(5,4),(4,5),(3,6)$


Blended Adjoint measons: $s_1^{k_1}s_2^{k_2}t^2$ 


For $SO(3)$, (under order 4)$

$PL=(s_1^2+s_1s_2+s_2^2)+(Ns_1+Ns_2)t+(N^2/2+N/2)t^2+((N^2/2-N/2)s_1+(N^2/2-N/2)s_2)t^2+(N^3/6-N^2/2+N/3)t^3+(N^3/6-N^2/2+N/3)(s_1^3s_2+s_1^2s_2^2+s_1s_2^3)t^3+(N^3/2-N^2/2)(s_1^3s_2^2+s_1^2s_2^3)t^3+(N^3/3-N/3)s_1^3s_2^3t^3+??? (N^4/24-N^3/4+11N^2/24-N/4)(s_1^3+s_2^3)t^4+(5N^4/24-3N^3/4+19N^2/24-N/4)(s_1^2s_2+s_1s_2^2)t^4+...$


For $SO(4)$, (under order 4)

$PL[0,0,t]=(N^2/2+N/2)t^2+(N^4/24-N^3/4+11N^2/24-N/4)t^4$

$PL[s_1,s_2,0]=2s_1^2+2s_1s_2+2s_2^2$

$PL[s,0,t]'=(N^2-N)st^2+(N^2/2+N/2)s_1^2t^2$

$PL[s_1,s_2,t]'=2N^2s_1s_2t^2+(N^2+N)(s_1^2s_2+s_1s_2^2)t^2$

For $SO(5)$,

More complicated...

$PL[0,0,t]=(N^2/2+N/2)t^2+(N^5/120-N^4/12+7N^3/24-5N^2/12+N/5)t^5$

$PL[s_1,s_2,0]=(s_1^2+s_1s_2^2+s_2^2)+(s_1^4+2s_1^2s_2^2+s_2^4)+(s_1^4s_2^2+s_1^3s_2^3+s_1^2s_2^4)+(s_1^4s_2^3+s_1^3s_2^4)+(s_1^6s_2^3+s_1^5s_2^4+s_1^4s_2^5+s_1^3s_2^6)$

$PL[s,0,t]'=Ns^2t+(N^2/2-N/2)st^2+(N^2/2+N/2)s^2t^2+(N^2/2-N/2)s^3t^2+(N^3/6-N^2/2+N/3)st^3+(N^5/120-N^4/12+7N^3/24-5N^2/12+N/5)s^5t^5+(N^5/120-N^4/12+7N^3/24-5N^2/12+N/5)s^6t^5+(N^6/48-5N^5/48+5N^4/48+5N^3/48-N^2/8)s^5t^6+(9N^6/80-9N^5/16+17N^4/16-15N^3/16+13N^2/40)s^6t^6$

$PL[s_1,s_2,t]'=Ns_1s_2t+N(s_1^2s_2+s_1s_2^2)t+N(s_1^3s_2+2s_1^2s_2+s_1s_2^3)t+N(s_1^4s_2+2s_1^3s_2^2+2s_1^2s_2^3+s_1s_2^4)t+2Ns_1^2s_2^2t+N(s_1^4s_2^2+s_1^3s_2^3+s_1^2s_^4)t+N(s_1^5s_2^2+s_1^4s_2^3+s_1^3s_2^4+s_1^2s_2^5)t+N^2s_1s_1t^2+$

13N^3s_1^6s_2^3t^4

65N^4s_1^5s_2^4t^4

767N^4s_1^6s_2^4t^4

27N^5s_1^5s_2t^5

661N^5s_1^6s_2^2t^5/120

241N^5s_1^4s_2^4t^5/120\

...


For $G_2$, (under order 6)

...

symmteric tensor and that's conjugate

Let's think $1$ or $2$ symmetric tensor(in $SU(N)$, $[2,0,\cdots,0]$), $1$ or $2$ conjugate of symmetric tensor(in $SU(N)$, $[0,\cdots,0,2]$), $N_f$ fundamental representation, $N_f$ antifundamental representation.

Character is $\frac{1}{2}(\chi(fun^2)-\chi(fun)^2)$

For example, $SU(2)$ symmetric tensor is $[2]$, which is same as adjoint representation above.



For $SU(3)$, (under order 6)

Weight diagram of symmetric 2 tensor is 


$\chi_{symm}=z_1^2+z_2+z_2^2/z_1^2+z_1/z_2+1/z_1+1/z_2^2$

$\chi_{ants}=z_2^2+z_1+z_1^2/z_2^2+z_2/z_1+1/z_2+1/z_1^2$


For 1 symm, conj. symm,

$PL[s_1,s_2,0,0]=s_1^3+s_1s_2+s_1^2s_2^2+s_2^3$

$PL[s,0,t,0]=s^3+s^2t^2(N^2/2+N/2)+t^3(N^3/6-N^2/2+N/3)$

$PL[s,0,t,o]-PL[s,0,t,0]-PL[s,0,0,o]-PL[0,0,t,o]+PL[s,0,0,0]+PL[0,0,t,0]+PL[0,0,0,o]=to^2s^2(N^3/2-N^2/2)+t^2os(N^3/2-N^2/2)-\cdots$

$PL[s_1,s_2,t,0]-PL[s_1,s_2,0,0]-PL[s_1,0,t,0]-PL[0,s_2,t,0]+PL[s_1,0,0,0]+PL[0,s_2,0,0]+PL[0,0,t,0]\\ =t^2s_1s_2^2(N^2/2+N/2)+t^3s_1s_2(1+s_1s_2)(N^3/3-N/3)+t^3s_1^3s_2^3(N^3/6+N^2/2+N/3)$

$PL[s_1,s_2,t,o]-PL[s_1,s_2,t,0]-PL[s_1,s_2,0,o]-PL[s_1,0,t,o]-PL[0,s_2,t,o]+PL[s_1,s_2,0,0]+PL[s_1,0,t,0]+PL[s_1,0,0,o]+PL[0,s_2,t,0]+PL[0,s_2,0,o]+PL[0,0,t,o]-PL[s_1,0,0,0]-PL[0,s_2,0,0]-PL[0,0,t,0]-PL[0,0,0,o]\\ =to(s_1s_2+s_1^2s_2^2)N^2+to^2s_1^2s_2(s_1+s_2^2)(N^3/2+N^2/2)+to^2s_1s_2^2N^3+t^2os_1s_2^2(s_1^2+s_2)(N^3/2+N^2/2)+t^3o^3s_1^5s_2^5(2N^6/9-N^5-4N^4/9+2N^2/9)+t^3o^3s_1^6s_2^6(11N^6/36-N^5/6-13N^4/36-N^3/3-4N^2/9)$

2 symmetric&conj. symm.

$PL[s1,s2,0,0]=2 \text{s1}^4 \text{s2}+4 \text{s1}^3 \text{s2}^3+4 \text{s1}^3+9 \text{s1}^2 \text{s2}^2+2 \text{s1} \text{s2}^4+4 \text{s1} \text{s2}+4 \text{s2}^3$

$PL[s1,0,t,0]=\frac{1}{6} N^3 \text{s1}^6 t^3+\frac{2}{3} N^3 \text{s1}^3 t^3+\frac{N^3 t^3}{6}+\frac{1}{2} N^2 \text{s1}^6 t^3+\frac{3}{2} N^2 \text{s1}^2 t^2-\frac{N^2 t^3}{2}+\frac{1}{3} N \text{s1}^6 t^3-\frac{2}{3} N \text{s1}^3 t^3+\frac{3}{2} N \text{s1}^2 t^2+\frac{N t^3}{3}+4 \text{s1}^3$

$PL[s,0,t,o]'=+\frac{11}{6} N^3 o^3 s^5 t^2+N^3 o^2 s^5 t+2 N^3 o^2 s^2 t+2 N^3 o s^4 t^2+N^3 o s t^2+N^2 o^2 s^5 t-N^2 o^2 s^2 t+N^2 o s^4 t^2+2 N^2 o s^3 t-N^2 o s t^2$

$PL[s1,s2,t,0]'=\frac{5}{3} N^3 \text{s1}^4 \text{s2} t^3+5 N^3 \text{s1}^2 \text{s2}^2 t^3+N^3 \text{s1} \text{s2}^4 t^3+\frac{4}{3} N^3 \text{s1} \text{s2} t^3+N^2 \text{s1}^6 \text{s2} t^2+\frac{15}{2} N^2 \text{s1}^4 \text{s2}^2 t^2+3 N^2 \text{s1}^4 \text{s2} t^3+2\ 4 N^2 N^2 \text{s1}^3 \text{s1} \text{s2} \text{s2}^5 t^2 t^2+10 N^2 \text{s1}^2 \text{s2}^3 t^2+3 N^2 \text{s1}^2 \text{s2}^2 t^3+3 N^2 \text{s1} \text{s2}^4 t^3+4 N^2 \text{s1} \text{s2}^2 t^2+2 N \text{s1}^6 \text{s2}^2 t-N \text{s1}^6 \text{s2} t^2+4 N \text{s1}^5 \text{s2} t+20 N \text{s1}^4 \text{s2}^3 t-\frac{9}{2} N \text{s1}^4 \text{s2}^2 t^2+\frac{4}{3} N \text{s1}^4 \text{s2} t^3+8 N \text{s1}^3 \text{s2}^5 t+12 N \text{s1}^3 \text{s2}^2 t+13 N \text{s1}^2 \text{s2}^4 t-2 N \text{s1}^2 \text{s2}^3 t^2-2 N \text{s1}^2 \text{s2}^2 t^3+2 N \text{s1}^2 \text{s2} t-2 N \text{s1} \text{s2}^5 t^2++2 N \text{s1} \text{s2}^4 t^3+4 N \text{s1} \text{s2}^3 t+2 N \text{s1} \text{s2}^2 t^2-\frac{4}{3} N \text{s1} \text{s2} t^3$

$PL[s1,s2,t,o]'=...$


General Number of Symm.

$PL[s1,s2,0,0]=\frac{17 \text{s1}^3 \text{s2}^6 \text{Ns}^9}{4320}+\frac{17 \text{s1}^6 \text{s2}^3 \text{Ns}^9}{4320}+\frac{11}{360} \text{s1}^3 \text{s2}^6 \text{Ns}^8+\frac{1}{18} \text{s1}^4 \text{s2}^4 \text{Ns}^8+\frac{11}{360} \text{s1}^6 \text{s2}^3 \text{Ns}^8-\frac{31}{144} \text{s1}^3 \text{s2}^6 \text{Ns}^7+\frac{1}{15} \text{s1}^2 \text{s2}^5 \text{Ns}^7-\frac{1}{12} \text{s1}^4 \text{s2}^4 \text{Ns}^7-\frac{31}{144} \text{s1}^6 \text{s2}^3 \text{Ns}^7+\frac{1}{15} \text{s1}^5 \text{s2}^2 \text{Ns}^7+\frac{\text{s1}^6 \text{Ns}^6}{120}+\frac{17}{72} \text{s1}^3 \text{s2}^6 \text{Ns}^6+\frac{\text{s2}^6 \text{Ns}^6}{120}-\frac{11}{60} \text{s1}^2 \text{s2}^5 \text{Ns}^6-\frac{5}{18} \text{s1}^4 \text{s2}^4 \text{Ns}^6+\frac{17}{72} \text{s1}^6 \text{s2}^3 \text{Ns}^6+\frac{5}{36} \text{s1}^3 \text{s2}^3 \text{Ns}^6-\frac{11}{60} \text{s1}^5 \text{s2}^2 \text{Ns}^6+\frac{39}{160} \text{s1}^3 \text{s2}^6 \text{Ns}^5+\frac{1}{12} \text{s1}^2 \text{s2}^5 \text{Ns}^5+\frac{7}{12} \text{s1}^4 \text{s2}^4 \text{Ns}^5+\frac{1}{12} \text{s1} \text{s2}^4 \text{Ns}^5+\frac{39}{160} \text{s1}^6 \text{s2}^3 \text{Ns}^5-\frac{1}{6} \text{s1}^3 \text{s2}^3 \text{Ns}^5+\frac{1}{12} \text{s1}^5 \text{s2}^2 \text{Ns}^5+\frac{1}{12} \text{s1}^4 \text{s2} \text{Ns}^5-\frac{\text{s1}^6 \text{Ns}^5}{24}-\frac{\text{s2}^6 \text{Ns}^5}{24}+\frac{\text{s1}^6 \text{Ns}^4}{8}-\frac{29}{90} \text{s1}^3 \text{s2}^6 \text{Ns}^4+\frac{\text{s2}^6 \text{Ns}^4}{8}+\frac{1}{12} \text{s1}^2 \text{s2}^5 \text{Ns}^4-\frac{5}{18} \text{s1}^4 \text{s2}^4 \text{Ns}^4-\frac{29}{90} \text{s1}^6 \text{s2}^3 \text{Ns}^4+\frac{5}{36} \text{s1}^3 \text{s2}^3 \text{Ns}^4+\frac{1}{12} \text{s1}^5 \text{s2}^2 \text{Ns}^4+\frac{1}{4} \text{s1}^2 \text{s2}^2 \text{Ns}^4-\frac{7}{216} \text{s1}^3 \text{s2}^6 \text{Ns}^3-\frac{3}{20} \text{s1}^2 \text{s2}^5 \text{Ns}^3-\frac{1}{12} \text{s1} \text{s2}^4 \text{Ns}^3+\frac{\text{s1}^3 \text{Ns}^3}{6}-\frac{7}{216} \text{s1}^6 \text{s2}^3 \text{Ns}^3-\frac{1}{3} \text{s1}^3 \text{s2}^3 \text{Ns}^3+\frac{\text{s2}^3 \text{Ns}^3}{6}-\frac{3}{20} \text{s1}^5 \text{s2}^2 \text{Ns}^3+\frac{1}{2} \text{s1}^2 \text{s2}^2 \text{Ns}^3-\frac{1}{12} \text{s1}^4 \text{s2} \text{Ns}^3-\frac{7 \text{s1}^6 \text{Ns}^3}{24}-\frac{7 \text{s2}^6 \text{Ns}^3}{24}+\frac{11 \text{s1}^6 \text{Ns}^2}{30}+\frac{1}{18} \text{s1}^3 \text{s2}^6 \text{Ns}^2+\frac{11 \text{s2}^6 \text{Ns}^2}{30}+\frac{1}{10} \text{s1}^2 \text{s2}^5 \text{Ns}^2+\frac{\text{s1}^3 \text{Ns}^2}{2}+\frac{1}{18} \text{s1}^6 \text{s2}^3 \text{Ns}^2+\frac{2}{9} \text{s1}^3 \text{s2}^3 \text{Ns}^2+\frac{\text{s2}^3 \text{Ns}^2}{2}+\frac{1}{10} \text{s1}^5 \text{s2}^2 \text{Ns}^2+\frac{1}{4} \text{s1}^2 \text{s2}^2 \text{Ns}^2+\text{s1} \text{s2} \text{Ns}^2+\frac{\text{s1}^3 \text{Ns}}{3}+\frac{\text{s2}^3 \text{Ns}}{3}-\frac{\text{s1}^6 \text{Ns}}{6}-\frac{\text{s2}^6 \text{Ns}}{6}$

$PL[s1,0,t,0]=\frac{5}{36} \text{Nf}^3 \text{Ns}^3 \text{s1}^3 t^3-\frac{1}{12} \text{Nf}^3 \text{Ns}^2 \text{s1}^3 t^3-\frac{1}{18} \text{Nf}^3 \text{Ns} \text{s1}^3 t^3+\frac{\text{Nf}^3 t^3}{6}+\frac{1}{15} \text{Nf}^2 \text{Ns}^5 \text{s1}^5 t^2-\frac{1}{6} \text{Nf}^2 \text{Ns}^4 \text{s1}^5 t^2+\frac{1}{12} \text{Nf}^2 \text{Ns}^3 \text{s1}^5 t^2+\frac{1}{12} \text{Nf}^2 \text{Ns}^3 \text{s1}^3 t^3-\frac{1}{12} \text{Nf}^2 \text{Ns}^2 \text{s1}^5 t^2-\frac{1}{4} \text{Nf}^2 \text{Ns}^2 \text{s1}^3 t^3+\frac{1}{4} \text{Nf}^2 \text{Ns}^2 \text{s1}^2 t^2+\frac{1}{10} \text{Nf}^2 \text{Ns} \text{s1}^5 t^2+\frac{1}{6} \text{Nf}^2 \text{Ns} \text{s1}^3 t^3+\frac{1}{4} \text{Nf}^2 \text{Ns} \text{s1}^2 t^2-\frac{\text{Nf}^2 t^3}{2}-\frac{1}{60} \text{Nf} \text{Ns}^5 \text{s1}^5 t^2+\frac{1}{8} \text{Nf} \text{Ns}^4 \text{s1}^4 t+\frac{1}{6} \text{Nf} \text{Ns}^3 \text{s1}^5 t^2-\frac{1}{4} \text{Nf} \text{Ns}^3 \text{s1}^4 t-\frac{1}{18} \text{Nf} \text{Ns}^3 \text{s1}^3 t^3-\frac{1}{4} \text{Nf} \text{Ns}^2 \text{s1}^5 t^2-\frac{1}{8} \text{Nf} \text{Ns}^2 \text{s1}^4 t-\frac{1}{6} \text{Nf} \text{Ns}^2 \text{s1}^3 t^3+\frac{1}{4} \text{Nf} \text{Ns}^2 \text{s1}^2 t^2+\frac{1}{10} \text{Nf} \text{Ns} \text{s1}^5 t^2+\frac{1}{4} \text{Nf} \text{Ns} \text{s1}^4 t+\frac{2}{9} \text{Nf} \text{Ns} \text{s1}^3 t^3+\frac{1}{4} \text{Nf} \text{Ns} \text{s1}^2 t^2+\frac{\text{Nf} t^3}{3}+\frac{\text{Ns}^6 \text{s1}^6}{120}-\frac{\text{Ns}^5 \text{s1}^6}{24}+\frac{\text{Ns}^4 \text{s1}^6}{8}-\frac{7 \text{Ns}^3 \text{s1}^6}{24}+\frac{\text{Ns}^3 \text{s1}^3}{6}+\frac{11 \text{Ns}^2 \text{s1}^6}{30}+\frac{\text{Ns}^2 \text{s1}^3}{2}-\frac{\text{Ns} \text{s1}^6}{6}+\frac{\text{Ns} \text{s1}^3}{3}$

$PL[s,0,t,o]=\frac{1}{18} \text{Nf}^2 \text{Ns}^6 o t s^6-\frac{1}{6} \text{Nf}^2 \text{Ns}^5 o t s^6+\frac{1}{18} \text{Nf}^2 \text{Ns}^4 o t s^6+\frac{1}{6} \text{Nf}^2 \text{Ns}^3 o t s^6-\frac{1}{9} \text{Nf}^2 \text{Ns}^2 o t s^6+\frac{11}{240} \text{Nf}^3 \text{Ns}^5 o^2 t s^5-\frac{1}{240} \text{Nf}^2 \text{Ns}^5 o^2 t s^5-\frac{1}{24} \text{Nf}^3 \text{Ns}^4 o^2 t s^5+\frac{1}{8} \text{Nf}^2 \text{Ns}^4 o^2 t s^5+\frac{5}{48} \text{Nf}^3 \text{Ns}^3 o^2 t s^5-\frac{7}{48} \text{Nf}^2 \text{Ns}^3 o^2 t s^5-\frac{5}{24} \text{Nf}^3 \text{Ns}^2 o^2 t s^5+\frac{1}{8} \text{Nf}^2 \text{Ns}^2 o^2 t s^5+\frac{1}{10} \text{Nf}^3 \text{Ns} o^2 t s^5-\frac{1}{10} \text{Nf}^2 \text{Ns} o^2 t s^5+\frac{3}{16} \text{Nf}^3 \text{Ns}^4 o t^2 s^4+\frac{5}{48} \text{Nf}^2 \text{Ns}^4 o t^2 s^4-\frac{1}{8} \text{Nf}^3 \text{Ns}^3 o t^2 s^4-\frac{1}{8} \text{Nf}^2 \text{Ns}^3 o t^2 s^4+\frac{1}{16} \text{Nf}^3 \text{Ns}^2 o t^2 s^4+\frac{7}{48} \text{Nf}^2 \text{Ns}^2 o t^2 s^4-\frac{1}{8} \text{Nf}^3 \text{Ns} o t^2 s^4-\frac{1}{8} \text{Nf}^2 \text{Ns} o t^2 s^4+\frac{29}{144} \text{Nf}^4 \text{Ns}^2 o^3 t s^4-\frac{1}{16} \text{Nf}^3 \text{Ns}^2 o^3 t s^4-\frac{5}{36} \text{Nf}^2 \text{Ns}^2 o^3 t s^4-\frac{1}{8} \text{Nf}^4 \text{Ns} o^3 t s^4+\frac{1}{8} \text{Nf}^3 \text{Ns} o^3 t s^4+\frac{1}{12} \text{Nf}^4 \text{Ns}^3 o^2 t^2 s^3-\frac{1}{12} \text{Nf}^2 \text{Ns}^3 o^2 t^2 s^3-\frac{1}{4} \text{Nf}^4 \text{Ns}^2 o^2 t^2 s^3+\frac{1}{4} \text{Nf}^2 \text{Ns}^2 o^2 t^2 s^3+\frac{1}{6} \text{Nf}^4 \text{Ns} o^2 t^2 s^3-\frac{1}{6} \text{Nf}^2 \text{Ns} o^2 t^2 s^3+\frac{1}{3} \text{Nf}^2 \text{Ns}^3 o t s^3-\frac{1}{3} \text{Nf}^2 \text{Ns} o t s^3+\frac{1}{6} \text{Nf}^4 \text{Ns}^2 o t^3 s^2-\frac{1}{6} \text{Nf}^2 \text{Ns}^2 o t^3 s^2-\frac{1}{6} \text{Nf}^4 \text{Ns} o t^3 s^2+\frac{1}{6} \text{Nf}^2 \text{Ns} o t^3 s^2+\frac{1}{2} \text{Nf}^3 \text{Ns}^2 o^2 t s^2-\frac{1}{2} \text{Nf}^2 \text{Ns} o^2 t s^2+\frac{1}{2} \text{Nf}^3 \text{Ns} o t^2 s-\frac{1}{2} \text{Nf}^2 \text{Ns} o t^2 s$

$PL[s1,s2,t,o]=...$



For $Sp(2)$

Same, because $Sp(n)$ adjoint. rep. is symmetric tensor.


For $SO(4)$

$PL[s_1,s_2,0]=2 \text{s1}^4 \text{s2}^4+\text{s1}^4 \text{s2}^3+2 \text{s1}^4 \text{s2}^2+\text{s1}^4+\text{s1}^3 \text{s2}^4+2 \text{s1}^3 \text{s2}^3+\text{s1}^3 \text{s2}^2+\text{s1}^3 \text{s2}+\text{s1}^3+2 \text{s1}^2 \text{s2}^4+\text{s1}^2 \text{s2}^3+3 \text{s1}^2 \text{s2}^2+\text{s1}^2 \text{s2}+\text{s1}^2+\text{s1} \text{s2}^3+\text{s1} \text{s2}^2+\text{s1} \text{s2}+\text{s1}+\text{s2}^4+\text{s2}^3+\text{s2}^2+\text{s2}$

$PL[0,0,t]=\frac{N^4 t^4}{24}-\frac{N^3 t^4}{4}+\frac{11 N^2 t^4}{24}+\frac{N^2 t^2}{2}-\frac{N t^4}{4}+\frac{N t^2}{2}$

$PL[s1,0,t]'=\frac{1}{8} N^4 \text{s1}^4 t^4+\frac{1}{6} N^4 \text{s1}^3 t^4+\frac{5}{24} N^4 \text{s1}^2 t^4+\frac{1}{8} N^4 \text{s1} t^4+\frac{1}{4} N^3 \text{s1}^4 t^4-\frac{1}{4} N^3 \text{s1}^2 t^4-\frac{1}{4} N^3 \text{s1} t^4-\frac{1}{8} N^2 \text{s1}^4 t^4-\frac{1}{6} N^2 \text{s1}^3 t^4+\frac{1}{2} N^2 \text{s1}^3 t^2-\frac{5}{24} N^2 \text{s1}^2 t^4+\frac{1}{2} N^2 \text{s1}^2 t^2-\frac{1}{8} N^2 \text{s1} t^4+\frac{1}{2} N^2 \text{s1} t^2-\frac{1}{4} N \text{s1}^4 t^4+\frac{1}{2} N \text{s1}^3 t^2+\frac{1}{4} N \text{s1}^2 t^4+\frac{1}{2} N \text{s1}^2 t^2+\frac{1}{4} N \text{s1} t^4+\frac{1}{2} N \text{s1} t^2$

$PL[s1,s2,t]'=\frac{3}{8} N^4 \text{s1}^2 \text{s2} t^4+\frac{1}{3} N^4 \text{s1} \text{s2} t^4+\frac{1}{4} N^3 \text{s1}^2 \text{s2} t^4+\frac{1}{2} N^2 \text{s1}^4 \text{s2}^4 t^2+7 N^2 \text{s1}^4 \text{s2}^3 t^2+6 N^2 \text{s1}^4 \text{s2}^2 t^2+\frac{5}{2} N^2 \text{s1}^4 \text{s2} t^2+7 N^2 \text{s1}^3 \text{s2}^4 t^2+9 N^2 \text{s1}^3 \text{s2}^3 t^2+\frac{13}{2} N^2 \text{s1}^3 \text{s2}^2 t^2+3 N^2 \text{s1}^3 \text{s2} t^2+6 N^2 \text{s1}^2 \text{s2}^4 t^2+\frac{13}{2} N^2 \text{s1}^2 \text{s2}^3 t^2+\frac{9}{2} N^2 \text{s1}^2 \text{s2}^2 t^2-\frac{3}{8} N^2 \text{s1}^2 \text{s2} t^4+\frac{5}{2} N^2 \text{s1}^2 \text{s2} t^2+\frac{5}{2} N^2 \text{s1} \text{s2}^4 t^2+3 N^2 \text{s1} \text{s2}^3 t^2+\frac{5}{2} N^2 \text{s1} \text{s2}^2 t^2-\frac{1}{3} N^2 \text{s1} \text{s2} t^4+\frac{3}{2} N^2 \text{s1} \text{s2} t^2+\frac{1}{2} N \text{s1}^4 \text{s2}^4 t^2+N \text{s1}^4 \text{s2}^3 t^2+\frac{1}{2} N \text{s1}^4 \text{s2} t^2+N \text{s1}^3 \text{s2}^4 t^2-N \text{s1}^3 \text{s2}^3 t^2+\frac{1}{2} N \text{s1}^3 \text{s2}^2 t^2-N \text{s1}^3 \text{s2} t^2+\frac{1}{2} N \text{s1}^2 \text{s2}^3 t^2+\frac{1}{2} N \text{s1}^2 \text{s2}^2 t^2-\frac{1}{4} N \text{s1}^2 \text{s2} t^4+\frac{1}{2} N \text{s1}^2 \text{s2} t^2+\frac{1}{2} N \text{s1} \text{s2}^4 t^2-N \text{s1} \text{s2}^3 t^2+\frac{1}{2} N \text{s1} \text{s2}^2 t^2-\frac{1}{2} N \text{s1} \text{s2} t^2$



For $SO(5)$

$PL[s1,s2,0]=2 \text{s1}^6 \text{s2}^6+2 \text{s1}^6 \text{s2}^5+2 \text{s1}^6 \text{s2}^4+\text{s1}^6 \text{s2}^3+\text{s1}^6 \text{s2}^2+2 \text{s1}^5 \text{s2}^6+2 \text{s1}^5 \text{s2}^5+2 \text{s1}^5 \text{s2}^4+\text{s1}^5 \text{s2}^3+\text{s1}^5 \text{s2}^2+\text{s1}^5+2 \text{s1}^4 \text{s2}^6+2 \text{s1}^4 \text{s2}^5+3 \text{s1}^4 \text{s2}^4+2 \text{s1}^4 \text{s2}^3+2 \text{s1}^4 \text{s2}^2+\text{s1}^4 \text{s2}+\text{s1}^4+\text{s1}^3 \text{s2}^6+\text{s1}^3 \text{s2}^5+2 \text{s1}^3 \text{s2}^4+2 \text{s1}^3 \text{s2}^3+2 \text{s1}^3 \text{s2}^2+\text{s1}^3 \text{s2}+\text{s1}^3+\text{s1}^2 \text{s2}^6+\text{s1}^2 \text{s2}^5+2 \text{s1}^2 \text{s2}^4+2 \text{s1}^2 \text{s2}^3+2 \text{s1}^2 \text{s2}^2+\text{s1}^2 \text{s2}+\text{s1}^2+\text{s1} \text{s2}^4+\text{s1} \text{s2}^3+\text{s1} \text{s2}^2+\text{s1} \text{s2}+\text{s1}+\text{s2}^5+\text{s2}^4+\text{s2}^3+\text{s2}^2+\text{s2}$

$PL[0,0,t]=\frac{N^5 t^5}{120}-\frac{N^4 t^5}{12}+\frac{7 N^3 t^5}{24}-\frac{5 N^2 t^5}{12}+\frac{N^2 t^2}{2}+\frac{N t^5}{5}+\frac{N t^2}{2}$

$PL[s,0,t]=\frac{1}{6} N^5 s^6 t^5+\frac{11}{60} N^5 s^5 t^5+\frac{1}{6} N^5 s^4 t^5+\frac{1}{8} N^5 s^3 t^5+\frac{3}{40} N^5 s^2 t^5+\frac{1}{30} N^5 s t^5+\frac{1}{6} N^4 s^6 t^5-\frac{1}{12} N^4 s^6 t^4-\frac{1}{12} N^4 s^5 t^4-\frac{1}{6} N^4 s^4 t^5-\frac{1}{12} N^4 s^4 t^4-\frac{1}{4} N^4 s^3 t^5-\frac{1}{4} N^4 s^2 t^5-\frac{1}{6} N^4 s t^5-\frac{1}{6} N^3 s^6 t^5-\frac{7}{12} N^3 s^5 t^5-\frac{1}{6} N^3 s^4 t^5-\frac{1}{8} N^3 s^3 t^5+\frac{1}{8} N^3 s^2 t^5+\frac{1}{6} N^3 s t^5-\frac{1}{6} N^2 s^6 t^5+\frac{1}{12} N^2 s^6 t^4+\frac{1}{12} N^2 s^5 t^4+\frac{1}{6} N^2 s^4 t^5+\frac{1}{12} N^2 s^4 t^4+\frac{1}{2} N^2 s^4 t^2+\frac{1}{4} N^2 s^3 t^5+\frac{1}{2} N^2 s^3 t^2+\frac{1}{4} N^2 s^2 t^5+\frac{1}{2} N^2 s^2 t^2+\frac{1}{6} N^2 s t^5+\frac{1}{2} N^2 s t^2+\frac{2}{5} N s^5 t^5+\frac{1}{2} N s^4 t^2+\frac{1}{2} N s^3 t^2-\frac{1}{5} N s^2 t^5+\frac{1}{2} N s^2 t^2-\frac{1}{5} N s t^5+\frac{1}{2} N s t^2$

$PL[s1,s2,t]=\frac{67}{6} N^3 \text{s2}^3 t^3 \text{s1}^6+\frac{15}{2} N^2 \text{s2}^3 t^3 \text{s1}^6+\frac{4}{3} N \text{s2}^3 t^3 \text{s1}^6+\frac{20}{3} N^3 \text{s2}^2 t^3 \text{s1}^6+2 N^2 \text{s2}^2 t^3 \text{s1}^6+\frac{1}{3} N \text{s2}^2 t^3 \text{s1}^6+\frac{11}{6} N^3 \text{s2} t^3 \text{s1}^6+\frac{1}{2} N^2 \text{s2} t^3 \text{s1}^6-\frac{1}{3} N \text{s2} t^3 \text{s1}^6+\frac{23}{2} N^2 \text{s2}^5 t^2 \text{s1}^6-\frac{1}{2} N \text{s2}^5 t^2 \text{s1}^6+17 N^2 \text{s2}^4 t^2 \text{s1}^6-2 N \text{s2}^4 t^2 \text{s1}^6+\frac{23}{2} N^2 \text{s2}^3 t^2 \text{s1}^6-\frac{3}{2} N \text{s2}^3 t^2 \text{s1}^6+\frac{9}{2} N^2 \text{s2}^2 t^2 \text{s1}^6-\frac{1}{2} N \text{s2}^2 t^2 \text{s1}^6+N^2 \text{s2} t^2 \text{s1}^6+32 N \text{s2}^6 t \text{s1}^6+31 N \text{s2}^5 t \text{s1}^6+21 N \text{s2}^4 t \text{s1}^6+9 N \text{s2}^3 t \text{s1}^6+3 N \text{s2}^2 t \text{s1}^6+15 N^3 \text{s2}^4 t^3 \text{s1}^5+11 N^2 \text{s2}^4 t^3 \text{s1}^5+2 N \text{s2}^4 t^3 \text{s1}^5+\frac{43}{3} N^3 \text{s2}^3 t^3 \text{s1}^5+4 N^2 \text{s2}^3 t^3 \text{s1}^5-\frac{1}{3} N \text{s2}^3 t^3 \text{s1}^5+\frac{41}{6} N^3 \text{s2}^2 t^3 \text{s1}^5+\frac{1}{2} N^2 \text{s2}^2 t^3 \text{s1}^5-\frac{1}{3} N \text{s2}^2 t^3 \text{s1}^5+\frac{11}{6} N^3 \text{s2} t^3 \text{s1}^5-\frac{1}{2} N^2 \text{s2} t^3 \text{s1}^5-\frac{1}{3} N \text{s2} t^3 \text{s1}^5+\frac{23}{2} N^2 \text{s2}^6 t^2 \text{s1}^5-\frac{1}{2} N \text{s2}^6 t^2 \text{s1}^5+22 N^2 \text{s2}^5 t^2 \text{s1}^5-3 N \text{s2}^5 t^2 \text{s1}^5+\frac{39}{2} N^2 \text{s2}^4 t^2 \text{s1}^5-\frac{5}{2} N \text{s2}^4 t^2 \text{s1}^5+\frac{25}{2} N^2 \text{s2}^3 t^2 \text{s1}^5-\frac{5}{2} N \text{s2}^3 t^2 \text{s1}^5+\frac{11}{2} N^2 \text{s2}^2 t^2 \text{s1}^5-\frac{1}{2} N \text{s2}^2 t^2 \text{s1}^5+\frac{3}{2} N^2 \text{s2} t^2 \text{s1}^5-\frac{1}{2} N \text{s2} t^2 \text{s1}^5+31 N \text{s2}^6 t \text{s1}^5+25 N \text{s2}^5 t \text{s1}^5+16 N \text{s2}^4 t \text{s1}^5+7 N \text{s2}^3 t \text{s1}^5+2 N \text{s2}^2 t \text{s1}^5+\frac{4}{15} N^5 \text{s2} t^5 \text{s1}^4+\frac{5}{6} N^4 \text{s2} t^5 \text{s1}^4-\frac{2}{3} N^3 \text{s2} t^5 \text{s1}^4-\frac{5}{6} N^2 \text{s2} t^5 \text{s1}^4+\frac{2}{5} N \text{s2} t^5 \text{s1}^4+\frac{53}{3} N^3 \text{s2}^4 t^3 \text{s1}^4+6 N^2 \text{s2}^4 t^3 \text{s1}^4+\frac{1}{3} N \text{s2}^4 t^3 \text{s1}^4+\frac{73}{6} N^3 \text{s2}^3 t^3 \text{s1}^4+\frac{3}{2} N^2 \text{s2}^3 t^3 \text{s1}^4-\frac{2}{3} N \text{s2}^3 t^3 \text{s1}^4+\frac{16}{3} N^3 \text{s2}^2 t^3 \text{s1}^4-\frac{1}{3} N \text{s2}^2 t^3 \text{s1}^4+\frac{3}{2} N^3 \text{s2} t^3 \text{s1}^4-\frac{1}{2} N^2 \text{s2} t^3 \text{s1}^4+17 N^2 \text{s2}^6 t^2 \text{s1}^4-2 N \text{s2}^6 t^2 \text{s1}^4+\frac{39}{2} N^2 \text{s2}^5 t^2 \text{s1}^4-\frac{5}{2} N \text{s2}^5 t^2 \text{s1}^4+\frac{33}{2} N^2 \text{s2}^4 t^2 \text{s1}^4-\frac{3}{2} N \text{s2}^4 t^2 \text{s1}^4+11 N^2 \text{s2}^3 t^2 \text{s1}^4-N \text{s2}^3 t^2 \text{s1}^4+\frac{11}{2} N^2 \text{s2}^2 t^2 \text{s1}^4+\frac{1}{2} N \text{s2}^2 t^2 \text{s1}^4+2 N^2 \text{s2} t^2 \text{s1}^4+21 N \text{s2}^6 t \text{s1}^4+16 N \text{s2}^5 t \text{s1}^4+11 N \text{s2}^4 t \text{s1}^4+5 N \text{s2}^3 t \text{s1}^4+2 N \text{s2}^2 t \text{s1}^4+\frac{13}{120} N^5 \text{s2}^2 t^5 \text{s1}^3+\frac{25}{12} N^4 \text{s2}^2 t^5 \text{s1}^3-\frac{41}{24} N^3 \text{s2}^2 t^5 \text{s1}^3-\frac{13}{12} N^2 \text{s2}^2 t^5 \text{s1}^3+\frac{3}{5} N \text{s2}^2 t^5 \text{s1}^3+\frac{7}{20} N^5 \text{s2} t^5 \text{s1}^3+\frac{1}{6} N^4 \text{s2} t^5 \text{s1}^3-\frac{3}{4} N^3 \text{s2} t^5 \text{s1}^3-\frac{1}{6} N^2 \text{s2} t^5 \text{s1}^3+\frac{2}{5} N \text{s2} t^5 \text{s1}^3+\frac{73}{6} N^3 \text{s2}^4 t^3 \text{s1}^3+\frac{3}{2} N^2 \text{s2}^4 t^3 \text{s1}^3-\frac{2}{3} N \text{s2}^4 t^3 \text{s1}^3+\frac{23}{3} N^3 \text{s2}^3 t^3 \text{s1}^3-N^2 \text{s2}^3 t^3 \text{s1}^3-\frac{2}{3} N \text{s2}^3 t^3 \text{s1}^3+\frac{10}{3} N^3 \text{s2}^2 t^3 \text{s1}^3-N^2 \text{s2}^2 t^3 \text{s1}^3-\frac{1}{3} N \text{s2}^2 t^3 \text{s1}^3+N^3 \text{s2} t^3 \text{s1}^3-N^2 \text{s2} t^3 \text{s1}^3+\frac{23}{2} N^2 \text{s2}^6 t^2 \text{s1}^3-\frac{3}{2} N \text{s2}^6 t^2 \text{s1}^3+\frac{25}{2} N^2 \text{s2}^5 t^2 \text{s1}^3-\frac{5}{2} N \text{s2}^5 t^2 \text{s1}^3+11 N^2 \text{s2}^4 t^2 \text{s1}^3-N \text{s2}^4 t^2 \text{s1}^3+8 N^2 \text{s2}^3 t^2 \text{s1}^3-N \text{s2}^3 t^2 \text{s1}^3+\frac{9}{2} N^2 \text{s2}^2 t^2 \text{s1}^3+\frac{1}{2} N \text{s2}^2 t^2 \text{s1}^3+2 N^2 \text{s2} t^2 \text{s1}^3+9 N \text{s2}^6 t \text{s1}^3+7 N \text{s2}^5 t \text{s1}^3+5 N \text{s2}^4 t \text{s1}^3+2 N \text{s2}^3 t \text{s1}^3+N \text{s2}^2 t \text{s1}^3+\frac{13}{120} N^5 \text{s2}^3 t^5 \text{s1}^2+\frac{25}{12} N^4 \text{s2}^3 t^5 \text{s1}^2-\frac{41}{24} N^3 \text{s2}^3 t^5 \text{s1}^2-\frac{13}{12} N^2 \text{s2}^3 t^5 \text{s1}^2+\frac{3}{5} N \text{s2}^3 t^5 \text{s1}^2+\frac{17}{40} N^5 \text{s2}^2 t^5 \text{s1}^2+\frac{1}{4} N^4 \text{s2}^2 t^5 \text{s1}^2-\frac{9}{8} N^3 \text{s2}^2 t^5 \text{s1}^2+\frac{1}{4} N^2 \text{s2}^2 t^5 \text{s1}^2+\frac{1}{5} N \text{s2}^2 t^5 \text{s1}^2+\frac{31}{120} N^5 \text{s2} t^5 \text{s1}^2-\frac{1}{4} N^4 \text{s2} t^5 \text{s1}^2-\frac{11}{24} N^3 \text{s2} t^5 \text{s1}^2+\frac{1}{4} N^2 \text{s2} t^5 \text{s1}^2+\frac{1}{5} N \text{s2} t^5 \text{s1}^2+\frac{16}{3} N^3 \text{s2}^4 t^3 \text{s1}^2-\frac{1}{3} N \text{s2}^4 t^3 \text{s1}^2+\frac{10}{3} N^3 \text{s2}^3 t^3 \text{s1}^2-N^2 \text{s2}^3 t^3 \text{s1}^2-\frac{1}{3} N \text{s2}^3 t^3 \text{s1}^2+\frac{3}{2} N^3 \text{s2}^2 t^3 \text{s1}^2-\frac{1}{2} N^2 \text{s2}^2 t^3 \text{s1}^2+\frac{1}{2} N^3 \text{s2} t^3 \text{s1}^2-\frac{1}{2} N^2 \text{s2} t^3 \text{s1}^2+\frac{9}{2} N^2 \text{s2}^6 t^2 \text{s1}^2-\frac{1}{2} N \text{s2}^6 t^2 \text{s1}^2+\frac{11}{2} N^2 \text{s2}^5 t^2 \text{s1}^2-\frac{1}{2} N \text{s2}^5 t^2 \text{s1}^2+\frac{11}{2} N^2 \text{s2}^4 t^2 \text{s1}^2+\frac{1}{2} N \text{s2}^4 t^2 \text{s1}^2+\frac{9}{2} N^2 \text{s2}^3 t^2 \text{s1}^2+\frac{1}{2} N \text{s2}^3 t^2 \text{s1}^2+3 N^2 \text{s2}^2 t^2 \text{s1}^2+N \text{s2}^2 t^2 \text{s1}^2+\frac{3}{2} N^2 \text{s2} t^2 \text{s1}^2+\frac{1}{2} N \text{s2} t^2 \text{s1}^2+3 N \text{s2}^6 t \text{s1}^2+2 N \text{s2}^5 t \text{s1}^2+2 N \text{s2}^4 t \text{s1}^2+N \text{s2}^3 t \text{s1}^2+N \text{s2}^2 t \text{s1}^2+\frac{7}{20} N^5 \text{s2}^3 t^5 \text{s1}+\frac{1}{6} N^4 \text{s2}^3 t^5 \text{s1}-\frac{3}{4} N^3 \text{s2}^3 t^5 \text{s1}-\frac{1}{6} N^2 \text{s2}^3 t^5 \text{s1}+\frac{2}{5} N \text{s2}^3 t^5 \text{s1}+\frac{1}{8} N^5 \text{s2} t^5 \text{s1}-\frac{1}{4} N^4 \text{s2} t^5 \text{s1}-\frac{1}{8} N^3 \text{s2} t^5 \text{s1}+\frac{1}{4} N^2 \text{s2} t^5 \text{s1}+\frac{3}{2} N^3 \text{s2}^4 t^3 \text{s1}-\frac{1}{2} N^2 \text{s2}^4 t^3 \text{s1}+N^3 \text{s2}^3 t^3 \text{s1}-N^2 \text{s2}^3 t^3 \text{s1}+\frac{1}{2} N^3 \text{s2}^2 t^3 \text{s1}-\frac{1}{2} N^2 \text{s2}^2 t^3 \text{s1}+\frac{1}{6} N^3 \text{s2} t^3 \text{s1}-\frac{1}{2} N^2 \text{s2} t^3 \text{s1}+\frac{1}{3} N \text{s2} t^3 \text{s1}+N^2 \text{s2}^6 t^2 \text{s1}+\frac{3}{2} N^2 \text{s2}^5 t^2 \text{s1}-\frac{1}{2} N \text{s2}^5 t^2 \text{s1}+2 N^2 \text{s2}^4 t^2 \text{s1}+2 N^2 \text{s2}^3 t^2 \text{s1}+\frac{3}{2} N^2 \text{s2}^2 t^2 \text{s1}+\frac{1}{2} N \text{s2}^2 t^2 \text{s1}+N^2 \text{s2} t^2 \text{s1}$



For $SU(4)$, 

Carten matrix is $$\begin{pmatrix}2&-1&0\\ -1& 2& -1\\ 0& -1& 2\end{pmatrix}$$

Weight diagram of symmetric 2 tensor is 


$\chi_{symm}=z_1^2+z_2+z_1^3z_3/z_2^2+z_1^2z_2/z_3^2+z_1^4z_3^2/z_2^4+z_1z_2^3z_3+1/(z_1^2z_2^2)+z_2^2z_3^2+z_1^2z_2^2/z_3^4+z_1^3/(z_2z_3)$

$\chi_{cnsy}=z_3^2+z_2+z_3^3z_1/z_2^2+z_3^2z_2/z_1^2+z_3^4z_1^2/z_2^4+z_3z_2^3z_1+1/(z_3^2z_2^2)+z_2^2z_1^2+z_3^2z_2^2/z_1^4+z_3^3/(z_2z_1)$








Maximum rank

rank 4 is possible.

For $SU(5)$,


But strange number appear..


For $F4$,




[Georgi] 27.5 Anomalies

There is a peculiar constrain on unified theories that follows from the structure of quantum field theory, the mathematical language in which all these theoreis are formulated. The constraint is that if the creation operators for all the right-handed spin 1/2 particles transform according to a representation generated by matrices $T^R_a$, then $T^R_a$ must satisfy $$\begin{align}\mbox{Tr}\left( \{T^R_a,T^R_b\}T^R_c\right)=0.\end{align}$$


You can show that this symmetric trace of three generators vanishes for all simple Lie algebras except $SU(N)$ for $N\ge 3$ (and $SO(6)$ which is equivalent to $SU(4)$). In $SU(N)$, suppose that $T^D_a$ generate the representation $D$ of $SU(N)$. Then define the invariant tensor $d^{abc}$ as follows: $$\begin{align}\mbox{Tr}\left( \{T^{D^1}_a,T^{D^1}_b\}T^{D^1}_c\right)\equiv d^{abc}\end{align}$$ for the defining representation $D^1$. Then, for any representation, you can show that $$\begin{align}\mbox{Tr}\left( \{T^D_a,T^D_b\}T^D_c\right)=A(D)d^{abc},\end{align}$$ where $A(D)$ is an integer, which is calle the anomaly of the representation $D$. Thus (23) is the statement that the creation operators for the right handed particles transform according to an anomaly free representation of the unifying group.


You can easily derive the following preperties of $A(D)$ $$\begin{align}A(\bar{D})=-A(D)\\ A(D_1\oplus D_2)=A(D_1)+A(D_2)\\ A(D_1\otimes D_2)=\mbox{dim}(D_1)A(D_2)+\mbox{dim}(D_2)A(D_1)\end{align}$$


For $SU(N)$, 

$A(N)=-A(\bar{N})=1$

$A(N^2-1)=0$

$A(\frac{N(N+1)}{2})=-A(\bar{\frac{N(N+1)}{2}})=N-4$

Look here


For $E7$,

E7(7) symmetry in perturbatively quantised N=8 supergravity (hal.science)



Reference

[0812.2315] The Hilbert Series of Adjoint SQCD (arxiv.org)


[hep-th/9801182] Lectures on D-branes, Gauge Theory and M(atrices) (arxiv.org)

[hep-th/0608050] Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics (arxiv.org)

[hep-th/0701063] Counting Gauge Invariants: the Plethystic Program (arxiv.org)


[1603.01049] Statistical mechanics approach in the counting of integer partitions (arxiv.org)

[2010.08560] EFT Asymptotics: the Growth of Operator Degeneracy (arxiv.org)


[1112.5454] New results for the SQCD Hilbert series (arxiv.org)

[1706.08520] Operator bases, $S$-matrices, and their partition functions (arxiv.org)

[1507.07240] Hilbert series and operator bases with derivatives in effective field theories (arxiv.org)


(Bootstrap, I don't know.)

[1607.06109] The S-matrix Bootstrap I: QFT in AdS (arxiv.org)

[1607.06110] The S-matrix Bootstrap II: Two Dimensional Amplitudes (arxiv.org)

[1708.06765] The S-matrix Bootstrap III: Higher Dimensional Amplitudes (arxiv.org)

[1905.06905] The S-matrix Bootstrap IV: Multiple Amplitudes (arxiv.org)


[1803.10233] The Analytic Functional Bootstrap I: 1D CFTs and 2D S-Matrices (arxiv.org)

[1811.10646] The Analytic Functional Bootstrap II: Natural Bases for the Crossing Equation (arxiv.org)


[2006.08221] An Analytical Toolkit for the S-matrix Bootstrap (arxiv.org)