M-Theory

 

Prerequisite: Quantum Field Theory, General Relativity

AdS/CFT correspondense Lecture note


String theory and M-theory

1. Introduction

2. The bosonic string

3. Conformal field theory and string interactions

4. Strings with wold-sheet supersymmetry

5. Strings with space-time supsersymmetry

6. T-duality and D-branes

7. The heterotic string

8. M-theory and string duality

9. String geometry

10. Flux compactifications

11. Black holes in string theory

12. Gauga theory/string theory dualities



String theory I

1. A first look at strings

1.1 Why strings?

1.2 Action principles

1.3 The open string spectrum

1.4 Closed and unoriented strings


2. Conformal field theory

2.1 Massless scalars in two dimensions

2.2 The operator product expansion

2.3 Ward identities and Noether's theorem

2.4 Conformal invariance

2.5 Free CFTs

2.6 The Virasoro algebra

2.7 Mode expansions

2.8 Vertex operators

2.9 More on states and operators


3. The Polyakov path integral

3.1 Sums over world-sheets

3.2 The Polyakov path integral

3.3 Gauge fixing

3.4 The Weyl anomaly

3.5 Scattering amplitudes

3.6 Vertex operators

3.7 String in curved spactime


4. The string spectrum

4.1 Old covariant quantization

4.2 BRST quantization

4.3 BRST quantization of the string

4.4 The no-ghost theorem


5. The string S-matrix

5.1 The circle and the torus

5.2 Moduli and Riemann surfaces

5.3 The measure for moduli

5.4 More about the measure


6. Tree-level amplitudes

6.1 Riemann surfaces

6.2 Scalar expectation values

6.3 The $bc$ CFT

6.4 The Veneziano amplitude

6.5 Chan-Paton factors and gauge interactions

6.6 Closed string tree amplitudes

6.7 General results


7. One-loop amplitudes

7.1 Riemann surfaces

7.2 CFT on the torus

7.3 The torus amplitude

7.4 Open and unoriented one-loop graphs


8. Toroidal compactification and $T$-duality

8.1 Toroidal compactification in field theory

8.2 Toroidal compactification in CFT

8.3 Closed strings and $T$-duality

8.4 Compactification of several dimensions

8.5 Orbifiolds

8.6 Open strings

8.7 D-branes

8.8 $T$-duality of unoriented theoreis


9. Higher order amplitudes

9.1 General tree-level amplitudes

9.2 Higher genus Riemann surfaces

9.3 Sewing and cutting world-sheets

9.4 Sewing and cutting CFTs

9.5 General amplitudes

9.6 String field theory

9.7 Large order behavior

9.8 High energy and high temperature

9.9 Low dimensions and noncritical strings


String theory II

10. Type I and type II superstrings

10.1 The superconformal algebra

10.2 Ramond and Neveu-Schwarz sectors

10.3 Vertex operators and bosonization

10.4 The superconformal ghosts

10.5 Physical states

10.6 Superstring theories in ten dimensions

10.7 Modular invariance

10.8 Divergences of type I theory


11. The heterotic string

11.1 World-sheet supersymmetries

11.2 The $SO(32)$ and $E_8\times E_8$ heterotic strings

11.3 Other ten-dimensional heterotic strings

11.4 A little Lie algebra

11.5 Current algebras

11.6 The bosonic construction and toroidal compactification


12. Superstring interactions

12.1 Low energy supergravity

12.2 Anomalies

12.3 Superspace and superfields

12.4 Tree-level amplitudes

12.5 General amplitudes

12.6 One-loop amplitudes


13. D-branes

13.1 $T$-duality of type II strings

13.2 $T$-duality of type I strings

13.3 The D-brane charge and action

13.4 D-brane interactions: statics

13.5 D-brane interactions: dynamics

13.6 D-brane interactions: bound states


14. Strings at strong coupling

14.1 Type IIB string and $SL(2,Z)$ duality

14.2 $U$-duality

14.3 $SO(32)$ type I-heterotic duality

14.4 Type IIA string and M-theory

14.5 The $E_8\times E_8$ heterotic string

14.6 What is string theory?

14.7 Is M for matrix?

14.8 Black hole quantum mechanics


15. Advanced CFT

15.1 Representations of the Virasoro algebra

15.2 The conformal bootstrap

15.3 Minimal modles

15.4 Current algebras

15.5 Coset models

15.6 Representations of the $N=1$ superconformal algebra

15.7 Rational CFT

15.8 Renormalization group flows

15.9 Statistical mechanics


16. Orbifolds

16.1 Orbifolds of the heterotic string

16.2 Spacetime supersymmetry

16.3 Examples

16.4 Low energy field theory


17. Calabi-Yau compactification

17.1 Conditions for $N=1$ supersymmetry

17.2 Calabi-Yau manifolds

17.3 Massless spectrum

17.4 Low energy field theory

17.5 Higher corrections

17.6 Generalizations


18. Physics in four dimensions

18.1 Continuous and discrete symmetries

18.2 Gauge symmetries

18.3 Mass scales

18.4 More on unification

18.5 Conditions for spactime supersymmetry

18.6 Low energy actions

18.7 Supersymmetry breaking in perturbation theory

18.8 Supersymmetry beyond perturbation theory


19. Advanced topics

19.1 The $N=2$ superconformal algebra

19.2 Type II string on Calabi-Yau manifolds

19.3 Heterotic string theoreis with (2,2) SCFT

19.4 $N=2$ minimal models

19.5 Gepner models

19.6 Mirror symmetry and applications

19.7 The conifold

19.8 String theoreis on K3

19.9 String duality below ten dimensions

19.10 Conclusion


Mirror symmetry

Part 1. Mathematical Preliminaries

1. DIfferential Geometry

2. Algebraic Geoemtry

3. Differential and Algebraic Topology

4. Equivariant Cohomology and Fixed-Point Theorems

5. Complex and Kahler Geometry

6. Calabi-Yau Manifolds and Their Moduli

7. Toric Geometry for String Theory


Part 2. Physics Preliminaries

8. What Is a QFT?

9. QFT in $d=0$

10. QFT in Dimension 1: Quantum Mechanics

11. Free Quantum Field Theories in 1+1 Dimensions

12. $\mathcal{N}=(2,2)$ Supersymmetry

13. Non-linear Sigma Models and Landau-Ginzburg Models

14. Renormalization Group Flow

15. Linear Sigma Models

16. Chiral Rings and Topological Field Theory

17. Chiral Rings and the Geometry of the Vacuum Bundle

18. BPS Solitons in $\mathcal{N}=2$ Landau-Ginzburg Theories

19. D-branes


Part 3. Mirror Symmetry: Physics Proof

20. Proof of Mirror Symmetry


Part 4. Mirror Symmetry: Mathematics Proof

21. Introduction and Overview

22. Complex Curves (Non-singular and Nodal)

23. Moduli Spaces of Curves

24. Moduli Spaces $\bar{\mathcal{M}}_{g,n}(X,\beta)$ of Stable Maps

25. Cohomology Classes on $\bar{\mathcal{M}}_{g,n}$ and $\bar{\mathcal{M}}_{g,n}(X,\beta)$

26. The Virtual Fundamental Class, Gromov-Witten Invariants, and Descendant Invariants

27. Localization on the Moduli Space of Maps

28. The Fundamental Solution of the Quantum Differential Equation

29. The Mirror Conjecture for Hypersurfaces I: The Fano Case

30. The Mirror Conjecture for Hypersurfaces II: The Calabi-Yau Case


Part 5. Advanced Topics

31. Topological Strings

32. Topological Strings and Target Space Physics

33. Mathematical Formulation of Gopakumar-Vafa Invariants

34. Multiple Covers, Integrality, and Gopakumar-Vafa Invariants

35. Mirror Symmetry at Higher Genus

36. Some Applications of Mirror Symmetry

37. Aspects of Mirror Symmetry and D-branes

38. More on the Mathematics of D-branes: Bundles, Derived Categories, and Lagrangians

39. Boundary $\mathcal{N}=2$ Theories



Reference

String theory and M-theory

String theory

Mirror symmetry