Introduction to Supersymmetry

This article is one of Lie Group & Representation contents.

Supersymmetry is a symmetry that encompasses fermions and bosons, in other words, combines light and matter.

Although essential for high-energy theoretical physics, the minimal supersymmetry model(MSSM) has been experimentally disproved.


Nevertheless, we must learn supersymmetry theory.


The first reason is to understand BRST quantization. Familiarized with supersymmetry is needed to understand the process of assuming ghost fermions to quantize bosons in QFT.


The second reason is that supersymmetry is the only way to combine space-time symmetry and internal symmetry. Unique scalability should not be discussed in a purely mathematical or aesthetic realm, which tells us that we are missing the big picture.


Lorentz group

generator:

$[J_i, J_j] = i\epsilon_{ijk} J_k$,    $[K_i, K_j] = -i\epsilon_{ijk} J_k$,    $[J_i, K_j] = i\epsilon_{ijk} K_j$

Change $J^{\pm}_j = \frac{1}{2}(J_j \pm i K_j)$, then $[J^{\pm}_i, J^{\pm}_j] = i\epsilon_{ijk} J^{\pm}_k$,    $[J^{\pm}_i, J^{\pm}_j] = 0$.

Lie group $SU(2) \times SU(2)$ have same Lie algebra with $SL(2,\mathbb{C})$.

casimir operator:

eigenvalue:


Poincare group

$[P_\mu, P_\nu] = 0$, $[J_i, P_j] = i\epsilon_{ijk} P_k$, $[J_i, P_0]=0$, $[K_i, P_j]=-iP_0$, $[K_i, P_0] = -iP_j$

With $M_{ij} = \epsilon_{ijk} J_k$, $[P_\mu, P_\nu] = 0$, 

$[M_{\mu\nu}, M_{\rho\sigma}] = ig_{\nu\rho} M_{\mu\sigma} - ig_{\mu\rho} M_{\nu\sigma} + ig_{\mu\sigma} M_{\nu\rho}$, $[M_{\mu\nu}, P_\rho] = -ig_{\rho\mu} P_\nu + ig_{\rho\nu} P_\mu$.

Casimir operator:


Vector and Tensor

This is for boson, like photon.


Weyl Spinor

Representation of $SL(2,\mathbb{C})$.

Let two complex component object $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$. Then $\mathcal{M} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2, \mathbb{C})$ as

$\psi_\alpha \rightarrow \psi'_\alpha = \mathcal{M}_\alpha^\beta \psi_\beta$, with $\alpha, \beta = 1, 2$ labling the components.

Left 


Dirac spinor

Two Weyl Spinor

This is for fermion, like electron.



Supersymmetry Algebra

New generator added on Poincare algebra.

Undotted spinor $Q^I_\alpha$ and dotted spinor $\bar{Q}^I_\dot{\alpha}$ with index $I=1, \cdots N$.

$[P_\mu, Q_\alpha^I] = 0$,

$[P_\mu, \bar{Q}_\dot{\alpha}^I] = 0$,

$[M_{\mu\nu}, Q_\alpha^I] = i(\sigma_{\mu\nu})_\alpha^\beta Q_\beta^I$,

$[M_{\mu\nu}, \bar{Q}^{I \dot{\alpha}}] = i(\bar{\sigma}_{\mu\nu})^\dot{\alpha}_\dot{\beta} \bar{Q}^{I\dot{\beta}}$


$\{Q^I_\alpha, \bar{Q}^J_\dot{\beta}\} = 2\sigma^\mu_{\alpha \dot{\beta}} P_\mu \delta^{IJ}$, $\{Q^I_\alpha, Q^J_\beta\} = \epsilon_{\alpha \beta} Z^{IJ}$, $\{\bar{Q}^I_\dot{\alpha}, \bar{Q}^J_\dot{\beta}\} = \epsilon_{\dot{\alpha} \dot{\beta}} (Z^{IJ})^*$





Superspace


Superfield


Susy Gauge Theory


Broken Susy


Propagetor





grassmann variable

https://physics.stackexchange.com/questions/530370/what-is-the-meaning-of-a-grassmann-variable

0.dvi (uc.edu)


Reference

오선근 - 초대칭성 물리학 입문

https://arxiv.org/pdf/hep-th/0101055.pdf

Wess,Bagger - supersymmetry and supergravity