SU(2) representation
This article is one of Lie Group & Representation contents.
The SU(2) algebra is [J_i,J_k]=i\epsilon_{ikl} J_l
J_3 eigenstates
goal: reduce the Hilbert space to block diagonal form.
We can diagonalize only one element, choose J_3.
Then pick the states with the highest value of J_3, and call that value as j.
J_3 \left| i, \alpha\right\rangle = j\left| j,\alpha \right\rangle
Also we can choose the states so that \left\langle j,\alpha | j,\beta \right\rangle = \delta_{\alpha \beta}
Raising and Lowering Operators
Define raising and lowering operators, J^\pm = (J_1 \pm J_2) / \sqrt{2}
The key idea is that we can use the raising and lowering operators to construct the irreducible representations.
There is no state with J_3 = j+1 because we have assumed that j is the highest value of J_3. Thus is must be that J^+ \left| j, \alpha \right\rangle = 0\ \forall \alpha
Thus we can choos the states \left| j-1, \alpha \right\rangle to be the orthonormal by choosing N_j(\alpha) = \sqrt{j} \equiv N_j
Then we have J^+ \left| j-1, \alpha \right\rangle = \frac{1}{N_j} J^+ J^- \left| j,\alpha \right\rangle = \frac{1}{N_j} [J^+, J^-] \left| j, \alpha \right\rangle = \frac{j}{N_j} \left| j, \alpha \right\rangle = N_j \left| j, \alpha \right\rangle
Now there are orthonormal states \left| j-2, \alpha \right\rangle satisfying J^- \left| j-1, \alpha \right\rangle = N_{j-1} \left| j-2, \alpha \right\rangle \\ J^- \left| j-2, \alpha \right\rangle = N_{j-1} \left| j-1, \alpha \right\rangle
Continuing the process, we find a whole tower of orthonormal states, \left| j - k, \alpha \right\rangle satisfying J^- \left| j-k, \alpha \right\rangle = N_{j-K} \left| j-k-1, \alpha \right\rangle \\ J^+ \left| j-k-1, \alpha \right\rangle = N_{j-k} \left| j-k, \alpha \right\rangle
The Ns can be chosen to be real, and because of the algebra, they satisfy N_{j-k}^2 = \left\langle j-k,\alpha \right| J^+ J^- \left| j - k,\alpha \right\rangle = \left\langle j-k, \alpha \right| [J^+, J^-] \left| j-k, \alpha \right\rangle + \left\langle j - k, \alpha \right| J^-J^+ \left| j-k, \alpha \right\rangle = N_{j-k+1}^2 + j-k
This is a recursion relation for the Ns which is easy to solve by starting with N_j: \begin{align*} N_j^2 & &=j \\ N_{j-1}^2 &- N_j^2 &= j-1 \\ \vdots & & \vdots \\ N_{j-k}^2 &- N_{j-k+1}^2 &= j-k \\ \hline N_{j-k}^2 & = (k+1)j & - k(k+1)/2 \\ & = \frac{1}{2}(k+1)(2j-k) & \end{align*}
Because the representation is finite dimensional, there must be some maximum number of lowering operators, l, that we can apply to \left| j,\alpha \right\rangle. We must eventually come to some m=j-l such that applying any more lowering operators gives 0. Then l is a non-negative integer specifying the number of times we can lower the states with highest J_3. Another lowering operator annihilates the state J^- \left| j-l, \alpha \right\rangle = 0
Finally, we don't need \alpha, because generator don't touch \alpha. \alpha become label of each irreducible representation.
The Standard Notation
Standard notation of irreducible representations label highest J_3 value in the representation and the J_3 value: \left| j,m \right\rangle
These matrix elements define the spin j represenatation of the SU(2) algebra: [J^j_a]_{kl} = \left\langle j,j+1-k \right| J_a \left| j,j+1-l\right\rangle
If we use different convention with m and m', [J_a^j]_{m'm} = \left\langle j,m' \right| J_a \left| j,m\right\rangle
For example, for 1/2, this gives the spin 1/2 representation J_1^{1/2} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0\end{pmatrix} = \frac{1}{2} \sigma_1 \\ J_2^{1/2} = \frac{1}{2}\begin{pmatrix} 0 & -i \\ i & 0\end{pmatrix} = \frac{1}{2}\sigma_2 \\ J_3^{1/2} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{1}{2} \sigma_3
\sigma_1 = \begin{pmatrix}0&1\\1&0\end{pmatrix}, \sigma_2 = \begin{pmatrix}0&-i\\i&0\end{pmatrix}, \sigma_3=\begin{pmatrix}1&0\\0&-1\end{pmatrix}
The spin 1/2 representation is the defining(or fundamental) represeantation of SU(2)
Then group element can represented by e^{i\vec{\alpha} \cdot \vec{\sigma}/2}
For another example, spin 1 representation looks like J_1^1=\frac{1}{\sqrt{2}}\begin{pmatrix}0&1&1\\1&0&1\\0&1&0\end{pmatrix},\ J_2^1=\frac{1}{\sqrt{2}}\begin{pmatrix}0&-i&0\\i&0&-i\\0&i&0\end{pmatrix},\ J_3^1=\begin{pmatrix}1&0&0\\0&0&0\\0&0&-1\end{pmatrix}
This is adjoint representation with f_{abc} = \epsilon_{abc}.
In general, the J_3 values are called weights, and this process is highest weight construction.
1. Diagonlaize J_3.
2. Find the states with the highest J_3 value j.
3. For each such state, explicitly construct the states of the irreducible spin j representation by applying the lowering operator to the states with highest J_3.
4. Now set aside the subspace spanned by these representations, which is now in canonical form, and concentrate on the subspace orthogonal to it.
5. THake these remaining states, go to step 2 and start again with the states with next highest J_3 value.
The end result will be the construction of a basis for the Hilbert space of the form \left| j,m,\alpha \right\rangle
They are also required by Schur's lemma, becauses the matrix elements satisfy \left\langle j',m',\alpha' \right| J_a \left| j,m,\alpha \right\rangle = [J_a^{j'}]_{m'm''} \left\langle j',m'',\alpha' | j,m,\alpha\right\rangle = \left\langle j',m',\alpha' | j,m'',\alpha\right\rangle [J_a^j]_{m''m}
Tensor Products
This is just addition of angular momentum.
Product of two different kinds of kets is \left| i, x \right\rangle \equiv \left| i \right\rangle \left| x \right\rangle
Let's look at this near the identity, for infinitesimal \alpha_a, (1+i\alpha_a J_a)\left| i,x\right\rangle = \left| j,y\right\rangle \left\langle j,y \right| (1+i\alpha_a J_a)\left| i,x \right\rangle = \left| j,y \right\rangle ( \delta_{ji} \delta_{yx} + i\alpha_a [J_a^{1\otimes 2} (g)]_{iyix})=\left| j,y \right\rangle (\delta_{ji} + i\alpha_a [J_a^1]+{ji})(\delta_{yx} + i\alpha_a [J_a^2]_{yx})
We can understand J_a operator operate each space, J_a(\left| j \right\rangle \left| x \right\rangle) = (J_a \left| j \right\rangle ) \left| x \right\rangle + \left| j \right\rangle (J_a \left| x \right\rangle)
J_3 value add
The J_3 values of tensor product states are just the sums of the J_3 values of the factors: J_3(\left| j_1, m_1\right\rangle \left| j_2, m_2 \right\rangle ) = (m_1+m_2)(\left| j_1, m_1\right\rangle \left| j_2, m_2\right\rangle)
For example, the tensor product of a spin 1/2 and spin 1 represenation.
There is a unique highest weight state, \left| 3/2, 3/2 \right\rangle = \left| 1/2, 1/2\right\rangle \left| 1,1\right\rangle
We can now construct the rest of the spin 3/2 states by applying lowering operators to both sides. For example, J^-\left| 3/2, 3/2 \right\rangle = J^- (\left| 1/2, 1/2\right\rangle \left| 1,1\right\rangle )=\sqrt{\frac{3}{2}}\left| 3/2,1/2\right\rangle = \sqrt{\frac{1}{2}} \left| 1/2,-1/2\right\rangle \left| 1,1\right\rangle + \left| 1/2,1/2\right\rangle \left| 1,0\right\rangle
Continuing the process gives \left| 3/2, -1/2 \right\rangle = \sqrt{\frac{2}{3}}\left| 1/2, -1/2\right\rangle \left| 1,0\right\rangle + \sqrt{\frac{1}{3}}\left| 1/2,1/2\right\rangle \left| 1,-1\right\rangle \\ \left| 3/2,-3/2\right\rangle = \left| 1/2, -1/2\right\rangle \left| 1,-1\right\rangle
Then the remaining states are orthogonal to these \sqrt{\frac{2}{3}}\left| 1/2, -1/2\right\rangle \left| 1,1\right\rangle - \sqrt{\frac{1}{3}}\left| 1/2,1/2\right\rangle \left| 1,0\right\rangle \\ \sqrt{\frac{1}{3}}\left| 1/2, -1/2\right\rangle \left| 1,0\right\rangle - \sqrt{\frac{2}{3}}\left| 1/2,1/2\right\rangle \left| 1,-1\right\rangle
applying the highest weight scheme to this reduces space gives \left| 1/2, 1/2 \right\rangle = \sqrt{\frac{2}{3}}\left| 1/2, -1/2\right\rangle \left| 1,1\right\rangle - \sqrt{\frac{1}{3}}\left| 1/2,1/2\right\rangle \left| 1,0\right\rangle \\ \left| 1/2, -1/2 \right\rangle = \sqrt{\frac{1}{3}}\left| 1/2, -1/2\right\rangle \left| 1,0\right\rangle - \sqrt{\frac{2}{3}}\left| 1/2,1/2\right\rangle \left| 1,-1\right\rangle
Reference
Howard Georgi - Lie Algebras in Particle Physics