[Nakahara GTP] 11.4 Pontrjagin and Euler classes
This article is one of Manifold, Differential Geometry, Fibre Bundle.
11.3.1 Pontrjagin classes
Let E be a real vector bundle over an m-dimensional manifold M with \dim_\mathbb{R}E=k. If E is endowed with the fibre metric, we may introduce orthonormal frames at each fibre. The structure group may be reduced to O(k) from GL(k,\mathbb{R}). Since the generators of \mathfrak{o}(k) are skew symmetric, the field strength \mathcal{F} of E is also skew symmetric. A skew-symmetry matrix A is not diagonalizable by element of a subgroup of GL(k,\mathbb{R}). It is, however, reducible to block diagonal form as \begin{align}A\rightarrow \begin{pmatrix}0&\lambda_1& & & 0\\ -\lambda_1 &0& & & \\ & & 0 & \lambda_2 & \\ & & -\lambda_2&0& \\ 0 & & & & \ddots\end{pmatrix}\rightarrow \begin{pmatrix}-\lambda_1& & & & \\ &-i\lambda_1& &0& \\ & & i\lambda_2& & \\ & 0& & -i\lambda_2& \\ & & & & \ddots\end{pmatrix}\end{align} where the second diagonalization is achieved only by an element of GL(k,\mathbb{C}). If k is odd, the last diagonal element is set to zero. For example, the generator of \mathfrak{o}(3)=\mathfrak{s}\mathfrak{o}(3) generating rotations around the z-axis is T_z=\begin{pmatrix}0&1&0\\ -1&0&0\\ 0&0&0\end{pmatrix}.
The total Pontrjagin class is defined by \begin{align}p(\mathcal{F})\equiv \det \left( I+\frac{\mathcal{F}}{2\pi}\right).\end{align} From the skew symmetry \mathcal{F}^t=-\mathcal{F}, it follows that \det \left( I+\frac{\mathcal{F}}{2\pi}\right)=\det \left( I+\frac{\mathcal{F}^t}{2\pi}\right)=\det\left( I-\frac{\mathcal{F}}{2\pi}\right). Therefore, p(\mathcal{F}) is an even function in \mathcal{F}. The expansion of p(\mathcal{F}) is \begin{align}p(\mathcal{F})=1+p_1(\mathcal{F})+p_2(\mathcal{F})+\cdots\end{align} where p_j(\mathcal{F}) is a polynomial of order 2j and is an element of H^{4j}(M;\mathbb{R}). We note that p_j(\mathcal{F})=0 for either 2j>k=\dim E or 4j>\dim M.
Let us diagonalize \mathcal{F}/2\pi as \begin{align}\frac{\mathcal{F}}{2\pi}\rightarrow A\equiv \begin{pmatrix}-ix_1& & & & \\ &ix_1& &0& \\ & & -ix_2& & \\ & 0& & -ix_2& \\ & & & & \ddots\end{pmatrix}\end{align} where x_k\equiv -\lambda_k/2\pi, \lambda_k being the eigenvalues of \mathcal{F}. The sign has been chosen to simplify the Euler calss defined here. The generating function of p(\mathcal{F}) is given by \begin{align}p(\mathcal{F})=\det(I+A)=\prod^{[k/2]}_{i=1}(1+x^2_i)\end{align} where [k/2]=\rightarrow \begin{cases}k/2& \mbox{if }k\mbox{ is even}\\ (k-1)/2& \mbox{if }k\mbox{ is odd.}\end{cases} In (5) only even powers appear, reflecting the skew symmetry. Each Pontrjagin class is computed from (5) as \begin{align}p_j(\mathcal{F})=\sum^{[k/2]}_{i_1<i_2<\cdots<i_j}x^2_{i_1}x^2_{i_2}\cdots x^2_{i_j}.\end{align} To write p_j(\mathcal{F}) in terms of the curvature two-form \mathcal{F}/2\pi, we first note that \mbox{tr}\left(\frac{\mathcal{F}}{2\pi}\right)^{2j}=\mbox{tr}A^{2j}=2(-1)^j\sum^{[k/2]}_{i=1}x^{2j}_i. It then follows that \begin{align}p_1(\mathcal{F})=\sum_ix^2_i=-\frac{1}{2}\left(\frac{1}{2\pi}\right)^2\mbox{tr}\mathcal{F}^2\\ p_2(\mathcal{F})=\sum_{i<j}x^2_ix^2_j=\frac{1}{2}\left[ \left(\sum_ix^2_i\right)^2-\sum_ix^4_i\right]\nonumber\\ =\frac{1}{8}\left(\frac{1}{2\pi}\right)^4[(\mbox{tr}\mathcal{F}^2)^2-2\mbox{tr}\mathcal{F}^4]\\ p_2(\mathcal{F})=\sum_{i<j<k}x^2_ix^2_jx_k^2 =\frac{1}{48}\left(\frac{1}{2\pi}\right)^6[-(\mbox{tr}\mathcal{F}^2)^3+6\mbox{tr}\mathcal{F}^2\mbox{tr}\mathcal{F}^4-8\mbox{tr}\mathcal{F}^6]\\ \vdots\nonumber\\ p_{[k/2]}(\mathcal{F})=x_1^2x_2^2\cdots x_{[k/2]}^2=\left(\frac{1}{2\pi}\right)^2\det \mathcal{F}.\end{align}
It is easy to guess that the Pontrjagin classes are written in terms of Chern classes. Since Chern classes are defined only for complex vector bundles, we must complexify the fibre of E so the complex numbers make sense. The resulting vector bundle is denoted by E^\mathbb{C}. Let A be a skew-symmetric real matrix. We find that \det (I+iA)=\det \begin{pmatrix}1+x_1& & & & \\ &1-x_1& &0& \\ & & 1+x_2& & \\ & 0& & 1-x_2& \\ & & & & \ddots\end{pmatrix}\\ =\prod^{[k/2]}_{i=1}(1-x^2_i)=1-p_1(A)+p_2(A)-\cdots from which it follows that \begin{align}p_j(E)=(-1)^jc_{2j}(E^\mathbb{C}).\end{align}
Example 11.5. Let M be a four-dimensional Riemannian manifold. When the orthonormal frame \{\hat{e}_\alpha\} is employed, the structure group of the tangent bundle TM may be reduced to O(4). Let \mathcal{R}=\frac{1}{2}\mathcal{R}_{\alpha\beta}\theta^\alpha\wedge\theta^\beta be the curvature two-form. For the tangent bundle, it is common to write p(M) instead of p(\mathcal{R}). We have \begin{align}\det\left( I+\frac{\mathcal{R}}{2\pi}\right)=1-\frac{1}{8\pi^2}\mbox{tr}\mathcal{R}^2+\frac{1}{128\pi^4}[(\mbox{tr}\mathcal{R}^2)^2-2\mbox{tr}\mathcal{R}^4].\end{align} Each Pontrjagin class is given by \begin{align}p_(M)=1\\ p_1(M)=-\frac{1}{8\pi^2}\mbox{tr}\mathcal{R}^2=-\frac{1}{8\pi^2}\mathcal{R}_{\alpha\beta}\mathcal{R}_{\beta\alpha}\\ p_2(M)=\frac{1}{128\pi^4}[(\mbox{tr}\mathcal{R}^2)^2-2\mbox{tr}\mathcal{R}^4]=\left( \frac{1}{2\pi}\right)^4\det \mathcal{R}.\end{align} Although p_2(M) vanishes as a differential form, we need in the next subsection to compute the Euler class.
11.4.2 Euler classes
Let M be a 2l-dimensional orientable Riemannian manifold and let TM be the tangent bundle of M. We denote the curvature by \mathcal{R}. It is always possible to reduce the structure group of TM down to SO(2l) by employing an orthonormal frame. The Euler class e of M is defined by the square root of the 4l-form p_l, \begin{align}e(A)e(A)=p_l(A).\end{align} Both sides should be understood as functions of a 2l\times 2l matrix A and not of the curvature \mathcal{R}, since p_1(\mathcal{R}) vanishes identically. However, e(M)\equiv e(\mathcal{R}) thus defined is a 2l-form and, indeed, gives a volume element of M. If M is an odd-dimensional manifold we define e(M)=0, see later.
Example 11.6. Let M=S^2 and consider the tangent bundle TS^2. From example 7.14, we find the curvature two-form, \mathcal{R}_{\theta\phi}=-\mathcal{R}_{\phi\theta}=\sin^2\theta\frac{d\theta\wedge d\phi}{\sin \theta}=\sin \theta d\theta\wedge d\phi where we have noted that g_{\theta\theta}=\sin^2\theta. Although p_1(S^2)=0 as a differential form, we compute it to find the Euler form. We have p_1(S^2)=-\frac{1}{8\pi^2}\mbox{tr}\mathcal{R}^2=-\frac{1}{8\pi^2}[\mathcal{R}_{\theta\phi}\mathcal{R}_{\phi\theta}+\mathcal{R}_{\phi\theta}\mathcal{R}_{\theta\phi}]\\ =\left(\frac{1}{2\pi}\sin\theta d\theta\wedge d\phi\right)^2 from which we read off \begin{align}e(S^2)=\frac{1}{2\pi}\sin\theta d\theta \wedge d\phi.\end{align}
It is interesting to note that \begin{align}\int_{S^2}e(S^2)=\frac{1}{2\pi}\int^{2\pi}_0d\phi\int^\pi_0d\theta\sin\theta=2\end{align} which is the Euler characteristic of S^2. This is not just a coincidence. Let us take another convincing example, a torus T^2. Since T^2 admits a flat connection, the curvature vanishes identically. It the follows that e(T^2)\equiv 0 and \chi(T^2)=0. These are special cases of the Gauss-Bonnet theorem, \begin{align}\int_M e(M)=\chi(M)\end{align} for a compact orientable manifold M. If M is odd dimensional both e and \chi vanish.
In general, the determinant of a 2l\times 2l skew-symmetric matrix A is a square of a polynomial called the Pfaffian \mbox{Pf}(A), \begin{align}\det A=\mbox{Pf}(A)^2.\end{align} We show that the Pfaffian is given by \begin{align}\mbox{Pf}(A)=\frac{(-1)^l}{2^ll!}\sum_p\mbox{sgn}(P)A_{P(1)P(2)}A_{P(3)P(4)}\cdots A_{P(2l-1)P(2l)}\end{align} where the phase has been chosen for later convenience. We first note that a skew-symmetric matrix A can be block diagonalized by an element of O(2l) as \begin{align}S^\dagger AS=\Lambda=\begin{pmatrix}0&\lambda_1& & & & & \\-\lambda_1 & 0& & & & 0& \\ & & 0& \lambda_2& & & \\ & &-\lambda_2&0& & & \\ & & & & \ddots& & \\ & 0& & & & 0& \lambda_l\\ & & & & & -\lambda_l& 0\end{pmatrix}.\end{align} It is easy to see that \det A=\det \Lambda =\prod^l_{i=1}\lambda^2_i. To compute \mbox{Pf}(\Lambda), we note that the non-vanishing terms in (21) are of form A_{12}A_{34}\cdots A_{2l-1,2l}. Moreover, there are 2^l ways of changing the suffices as A_{ij}\rightarrow A_{ji}, such as A_{12}A_{34}\cdots A_{2l-1,2l}\rightarrow A_{21}A_{34}\cdots A_{2l-1,2l} and l! permutations of the pairs of indices, for example, A_{12}A_{34}\cdots A_{2l-1,2l}\rightarrow A_{34}A_{12}\cdots A_{2l-1,2l}. Hence, we have \mbox{Pf}(\Lambda)=(-1)^lA_{12}A_{34}\cdots A_{2l-1,2l}=(-1)^l\prod^l_{i=1}\lambda_i. Thus, we conclude that a block diagonal matrix \Lambda satisfies \det \Lambda=\mbox{Pf}(\Lambda)^2. To show that (20) is ture for any skew-symmetric matrices (not necessarily block diagonal) we use the following lemma, \begin{align}\mbox{Pf}(X^tAX)=\mbox{Pf}(A)\det X.\end{align} If S^t AS=\Lambda for S\in O(2l), we have A=S\Lambda S^t, hence \mbox{Pf}(S\Lambda S^t)=\mbox{Pf}(\Lambda)\det S=(-1)^l\prod^l_{i=1}\lambda_i \det S. We finally find \det A=\mbox{Pf}(A)^2 for a skew-symmetric matrix A.
Note that \mbox{Pf}(A) is SO(2l) invariant but changes sign under an improper rotation S (\det S=-1) of O(2l).
Exercise 11.3. Show that the determinant of an odd-dimensional skew-symmetric matric vanishes. This is why we put e(M)=0 for an odd-dimensional manifold.
The Euler class is defined in terms of the curvature \mathcal{R} as \begin{align}e(M)=\mbox{Pf}(\mathcal{R}/2\pi)\nonumber\\ =\frac{(-1)^l}{(4\pi)^ll!}\sum_P \mbox{sgn}(P)\mathcal{R}_{P(1)P(2)}\cdots \mathcal{R}_{P(2l-1)P(2l)}.\end{align} The generating function is obtained by taking x_j=-\lambda_i/2\pi, \begin{align}e(x)=x_1x_2\cdots x_l=\prod^l_{i=1}x_i.\end{align} The phase (-1)^l has been chosen to simplify the RHS.
Example 11.7. Let M be a four-dimensional orientable manifold. The structure group of TM is SO(4), see example 11.5. The Euler class is obtained from (24) as \begin{align}e(M)=\frac{1}{2(4\pi)^2}\epsilon^{ijkl}\mathcal{R}_{ij}\wedge\mathcal{R}_{kl}.\end{align} This is in agreement with the result of example 11.5. The relevent Pontrjagin class is p_2(M)=\frac{1}{128\pi^4}[(\mbox{tr}\mathcal{R}^2)^2-2\mbox{tr}\mathcal{R}^4]=x^2_1x^2_2. Since e(M)=x_1x_2, we have p_2(M)=e(M)\wedge e(M). This is written as a matrix identity, \frac{1}{128\pi^4}[(\mbox{tr}A^2)^2-2\mbox{tr}A^4]=\left( \frac{1}{2(4\pi)^4}\epsilon^{ijkl}A_{ij}A_{kl}\right)^2.
11.4.3 Hirzebruch L-polynomial and \hat{A}-genus
The Hizebruch L-polynomial is defined by \begin{align}L(x)=\prod^k_{j=1}\frac{x_j}{\tanh x_j}\nonumber\\ =\prod^k_{j=1}\left( 1+\sum_{n\ge 1}(-1)^{n-1}\frac{2^{n2}}{(2n)!}B_nx^{2n}_j\right)\end{align} where the B_n are Bernoulli numbers, see (11.3.3). The function L(x) is even in x_j and can be written in terms of the Pontrjagin classes, \begin{align}L(\mathcal{F})=1+\frac{1}{3}p_1+\frac{1}{45}(-p^2_1+7p_2)+\frac{1}{945}(2p^3_1-13p_1p_2+62p_3)+\cdots\end{align} where p_j stands for p_j(\mathcal{F}). From the splitting principle, we find that \begin{align}L(E\oplus F)=L(E)\wedge L(F).\end{align}
The \hat{A} (A-roof) genus \hat{A}(\mathcal{F}) is defined by \begin{align}\hat{A}(\mathcal{F})=\prod^k_{j=1}\frac{x_j/2}{\sinh (x_j/2)}\nonumber\ \prod^k_{j=1}\left( 1+\sum_{n\ge 1}(-1)^n\frac{(2^{2n}-2)}{(2n)!}B_nx^{2n}_j\right).\end{align} This is an even function of x_j and can be expanded in p_j. \hat{A} is also called the Dirac genus by physicists. It satisfies \begin{align}\hat{A}(E\oplus F)=\hat{A}(E)\wedge \hat{A}(F).\end{align} \hat{A} is written in terms of the Pontrjagin classes as \begin{align}\hat{A}(\mathcal{F})=1-\frac{1}{24}p_1+\frac{1}{5760}(7p_1^2-4p_2)\nonumber\\ +\frac{1}{967680}(-31p_1^3+44p_1p_2-16p_3)+\cdots.\end{align}
Example 11.8. Let M be a compact connected and orientable four-dimensional manifodl. Let us consider the symmetric bilinear form \sigma:H^2(M;\mathbb{R})\times H^2(M;\mathbb{R})\rightarrow \mathbb{R} defined by \begin{align}\sigma([\alpha],[\beta])=\int_M\alpha\wedge\beta.\end{align} \sigma is a b^2\times b^2 symmetric matrix where b^2=\dim H^2(M;\mathbb{R}) is the Betti number. Clearly \sigma is non-degenerate since \sigma([\alpha],[\beta])=0 for any [\alpha]\in H^2(M;\mathbb{R}) implies [\beta]=0. Let p (q) be the number of positive (negative) eigenvalues of \sigma. The Hirzebruch signature of M is \tau (M)\equiv p-q. According to the Hirzebruch signature theorem, this number is also given in terms of the L-polynomial as \begin{align}\tau(M)=\int_ML_1(M)=\frac{1}{3}\int_Mp_1(M).\end{align}