[Nakahara GTP] 13.2 Abelian anomalies

  This article is one of Manifold, Differential Geometry, Fibre Bundle.


We work in an even-dimensional manifold M (\dim M=m=2l) with a Euclidean signiture. We assume our system is non-chiral, namely, the gauge field couples to the right and left components in the same way. (but SM?...) Our convention is \gamma^{\mu\dagger}=\gamma^\mu\quad \{\gamma^\mu,\gamma^\nu\}=2\delta^{\mu\nu}\quad \gamma^{m+1}=(i)^l\gamma^1\cdots\gamma^m\\ \gamma^{m+1\dagger}=\gamma^{m+1}\quad (\gamma^{m+1})^2=+I. The Lie group generators \{T_\alpha\} satisfy T^\dagger_\alpha=-T_\alpha\quad [T_\alpha,T_\beta]=f_{\alpha\beta}^\gamma T_\gamma \quad \mbox{tr}(T^\alpha T^\beta)=-\frac{1}{2}\delta^{\alpha\beta}.


13.2.1 Fujikawa’s method 

Fujikawa's way reveals the topological and geometrical nature of the problem most directly. This method is equivalent to the heat kernel proof of the relevant index theorem.


Let \psi be a massless Dirac field interacting with an external non-Abelian gauge field \mathcal{A}_\mu. The effective action W[\mathcal{A}] is given by \begin{align}e^{-W[\mathcal{A}]}=\int \mathcal{D}\psi \mathcal{D}\bar{\psi}e^{-\int dx\, \bar{\psi}i\nabla\!\!\! /\psi}\end{align} where i\nabla\!\!\!\! / =i\gamma^\mu \nabla_\mu=i\gamma^\mu(\partial_\mu+\omega_\mu+\mathcal{A}_\mu), with \omega_\mu=\frac{1}{2}\omega_{\mu\alpha\beta}\Sigma^{\alpha\beta} being the spin connection of the background space. We compactly the space in such a way that the geometry (the spin connection) plays toe role. For example, this can be achieved by compactifying \mathbb{R}^4 to S^4=\mathbb{R}^4\cup \{\infty\}, for which the Dirac genus \hat{A}(TM) is trivial; see example 12.5. If this is the case, the spin connection is irrelevant and may be dropped from i\nabla\!\!\!\! /. The classical action \int dx\bar{\psi}i\nabla\!\!\!\! / \psi is invariant with respect to the chiral rotation, \begin{align}\psi\rightarrow e^{i\gamma^{m+1}\alpha}\psi,\ \bar{\psi}\rightarrow \bar{\psi}e^{i\gamma^{m+1}\alpha}.\end{align} We expand \psi and \bar{\psi} as \begin{align}\psi=\sum_i a_i\psi_i\quad \bar{\psi}=\sum_i \bar{b}_i\psi^\dagger_i\end{align} where a_i and \bar{b}_i are anti-commuting Grassmann variables, \{a_i,a_j\}=0\quad \{\bar{b}_i,\bar{b}_j\}=0\quad \{a_i,\bar{b}_j\}=0 and \psi_i is an eigenvector of the Dirac operator \begin{align}i\nabla\!\!\!\! /\psi_i=\lambda_i\psi_i.\end{align} Since i\nabla\!\!\!\! / is Hermitian, \lambda_i is real. Since M is compact, \psi_i can be normalized as \langle \psi_i|\psi_j\rangle= \int dx\, \psi^\dagger_i(x)\psi_j(x)=\delta_{ij}. Now the path integrals over \psi and \bar{\psi} are replaced by those over a_i and \bar{b}_i.


Consider an infinitesimal chiral transformation, \begin{align}\psi(x)\rightarrow (x)+i\alpha(x)\gamma^{m+1}\psi(x),\\ \bar{\psi}(x)\rightarrow \bar{\psi}(x)+i\bar{\psi}(x)\alpha(x)\gamma^{m+1}.\end{align} As usual, we take \alpha=\alpha(x) to be x-dependent. Under this change, the classical action transforms as \begin{align}\int dx\, \bar{\psi}i\nabla\!\!\!\! /\psi\rightarrow \int dx\, (\bar{\psi}+i\bar{\psi}\alpha \gamma^{m+1})i\nabla\!\!\!\!(\psi+i\alpha\gamma^{m+1}\psi)\nonumber\\ =\int dx\, \bar{\psi}i\nabla\!\!\!\! /\psi+i\int dx [\alpha \bar{\psi}\gamma^{m+1}i\nabla\!\!\!\! /\psi+\bar{\psi}i\nabla\!\!\!\! /(\alpha \gamma^{m+1}\psi)]\nonumber\\ \int dx\, \bar{\psi}i\nabla\!\!\!\! \psi-\int dx\, [\alpha\bar{\psi}\gamma^{m+1}\gamma^\mu(\partial_\mu+\mathcal{A}_\mu)\psi\nonumber\\ +\bar{\psi}\gamma^\mu(\partial_\mu+\mathcal{A}_\mu)(\alpha\gamma^{m+1}\psi)]\nonumber\\ =\int dx\, \bar{\psi}i\nabla\!\!\!\! /\psi+\int dx\, \alpha(x)\partial_\mu j^\mu_{m+1}(x)\end{align} where we have used the anti-commutation relations \{\gamma^\mu,\gamma^{m+1}\}=0 and \begin{align}j^\mu_{m+1}(x)\equiv \bar{\psi}(x)\gamma^\mu \gamma^{m+1}\psi(x)\end{align} is the chiral current. This is the higher-dimensional analogue of j^\mu_5 defined previously. If (7) were the only change caused by (5,6), naive application of the Ward-Takahashi relation would imply the conservation of the axial current \partial_\mu j^\mu_{m+1}=0. In quantum theory, however, we have an additional change, namely the change of the path integral measure. Define the chiral-rotated fields by \begin{align}\psi'=\psi+i\alpha\gamma^{m+1}\psi=\sum a'_i\psi_i,\\ \bar{\psi}'=\bar{\psi}+i\bar{\psi}\alpha\gamma^{m+1}=\sum \bar{b}'_i\psi^\dagger_i.\end{align} Now the measure changes as \begin{align}\int \prod_i da_i\, d\bar{b}_i\rightarrow \int\prod_i da'_i\, d\bar{b}'_i.\end{align} From the orthonormality of \{\psi_i\}, we find that \begin{align}a'_i=\langle \psi_i|\psi'\rangle=\langle \psi_i|(1+i\alpha\gamma^{m+1})\psi\rangle \nonumber\\ \sum_j \langle \psi_i|(1+i\alpha \gamma^{m+1})\psi_j\rangle a_j\equiv \sum_j C_{ij}a_j\end{align} where \begin{align}C_{ij}=\langle \psi_i|(1+i\alpha \gamma^{m+1})\psi_j\rangle=\delta_{ij}+i\alpha \langle \psi_i|\gamma^{m+1}\psi_j\rangle.\end{align} The measure in terms of the new variables is \begin{align}\prod da'_j=[\det C_{ij}]^{-1}\prod da_i=\exp (-\mbox{tr}\ln C_{ij})\prod da_i\nonumber\\ =\exp [-\mbox{tr}\ln (I+i\alpha\langle \psi_i|\gamma^{m+1}\psi_j\rangle)]\prod da_i\nonumber\\ \approx \exp (-\mbox{tr}i\alpha \langle \psi_i|\gamma^{m+1}\psi_j\rangle)\prod da_i\nonumber\\ =\exp \left( -i\alpha \sum_i \langle \psi_i|\gamma^{m+1}\psi_i\rangle \right)\prod da_i\end{align} where the inverse of the determinant appears since a_i and a'_i are Grassmann variables. As for \bar{b}_i\rightarrow \bar{b}'_i, we have \begin{align}\bar{b}'_i=\sum_j \bar{b}_j\langle \psi_j| (1+i\alpha \gamma^{m+1})|\psi_i\rangle =\sum_j C_{ji}\bar{b}_j.\end{align} The Jacobian for the change \bar{b}_i\rightarrow \bar{b}'_i agrees with (14). Thus, the measure transforms under the chiral rotation (9,10) as \begin{align}\prod_i da_i\, d\bar{b}_i\rightarrow \prod_i da'_i\, d\bar{b}'_i\, \exp \left( -2i\int dx\, \alpha(x)\, \sum \psi^\dagger_n(x)\gamma^{m+1}\psi_n(x)\right).\end{align} Now the effective acrtion has two expressions: \begin{align}e^{-W[\mathcal{A}]}=\int \prod_i da_i\, d\bar{b}_i\, \exp \left( -\int dx\, \bar{\psi}i\nabla\!\!\!\!/ \psi\right)\nonumber\\ =\int \prod_i da'_i\, d\bar{b}'_i\, \exp \left( -\int dx\, \bar{\psi}i\nabla\!\!\!\!/ \psi -\int dx\, \alpha(x)\partial_\mu j^\mu_{m+1}(x)-2i\int dx\, \alpha(x)\mathbf{A}(x)\right)\end{align} where \begin{align}\mathbf{A}(x)\equiv \sum_i \psi^\dagger_i(x)\gamma^{m+1}\psi_i(x).\end{align} Since \alpha(x) is arbitrary, we have \begin{align}\partial_\mu j^\mu_{m+1}(x)=-2i\mathbf{A}(x).\end{align} Thus, naive conservation of an axial current does not hold in quantum theory. This non-conservation of the current j^\mu_{m+1} is called the Abelian anomaly (or chiral anomaly or axial anomaly). 


How is this related to the topology? Let us look at the Jacobian (16) and assume that \alpha(x) is independent of x. The integral in (16) is not well defined and must be regularized. We introduce the Gaussian cut-off (heat-kernel regularization) as \begin{align} \int dx\, \mathbf{A}(x)=\int dx \sum_i \psi^\dagger_i(x)\gamma^{m+1}\psi_i(x)\exp [-(\lambda_i/M)^2]|_{M\rightarrow \infty}\nonumber\\ =\sum \langle \psi_i|\gamma^{m+1}\exp [-i(i\nabla\!\!\!\! / M)^2]|\psi_i\rangle |_{M\rightarrow \infty}.\end{align} In (20), 1/M^2 corresponds to the 'time' parameter t in the previous chapter and M\rightarrow \infty implies t\rightarrow \infty. Let |\psi_i\rangle be an eigenstate of i\nabla\!\!\!\! / with non-vanishing eigenvalue \lambda_i. Among the eigenstates, there exists a state |\psi_i\rangle^\chi\equiv \gamma^{m+1}|\psi\rangle with eigenvalue: -\lambda_i: i\nabla\!\!\!\!/ |\psi_i\rangle^\chi =i\nabla\!\!\!\! \gamma^{m+1}|\psi_i\rangle =-\gamma^{m+1}i\nabla\!\!\!\! |\psi_i\rangle \\ =-\lambda_i\gamma^{m+1}|\psi_i\rangle=-\lambda_i|\psi_i\rangle^\chi where use has been made of the anti-commutation relation \{\gamma^{m+1},i\nabla\!\!\!\! /\}=0. Since i\nabla\!\!\!\! / is a Hermitian operator, eigenvectors which belong to different eigenvalues are orthogonal, hence \langle \psi_i|\psi_i\rangle^\chi=\langle \psi_i|\gamma^{m+1}|\psi_i\rangle=0. This shows that \langle \psi_i|\gamma^{m+1}\exp [-(i\nabla\!\!\!\!//M)^2]|\psi\rangle=\langle \psi_i|\gamma^{m+1}|\psi_i\rangle \exp [-(\lambda_i/M)^2]=0. Thus, the contribution to the RHS of (20) comes only froim the zero-energy modes. Let |0,i\rangle be the zero-energy moides of i\nabla\!\!\!\!/, (1\le i\le n_0). They are not in an irreducible representation of the spin algebra and should be classified according to the eigenvalue of \gamma^{m+1}. We write \begin{align}\gamma^{m+1}|0,i\rangle_\pm=\pm |0,i\rangle_\pm.\end{align} Then, (20) becomes \begin{align}\int dx\, \mathbf{A}(x)=\sum \langle \psi_i|\gamma^{m+1}\exp [-(i\nabla\!\!\!\! //M)^2]|\psi_i\rangle|_{M\rightarrow \infty}\nonumber\\ \sum_{i,+} \langle 0,i|0,i\rangle_+-\sum_{i,-}\langle 0,i|0,i\rangle_-\nonumber\\ =\nu_+-\nu_-=\mbox{ind}i\nabla\!\!\!\! /_+\end{align} where \nu_+ (\nu_-) is the number of zero-energy modes with positive (negative) chirality (\nu_++\nu_-=n_0) and i\nabla\!\!\!\!/_+ is defined by i\nabla\!\!\!\! /=\begin{pmatrix}0&i\nabla\!\!\!\! /_-\\ i\nabla\!\!\!\!/_+&0\end{pmatrix}\quad i\nabla\!\!\!\! /_-=(i\nabla\!\!\!\!_+)^\dagger. The Atiyah-Singer index theorem now comes into the problem.


To show that (22), indeed, represents an integral of the relevant Chern character, we first note that \begin{align}(i\nabla\!\!\!\! /)^2=-\gamma^\mu\gamma^\nu \nabla_\mu \nabla_\nu=-\{\delta^{\mu\nu}+\frac{1}{2}[\gamma^\mu,\gamma^\nu]\}\frac{1}{2}[\{\nabla_\mu,\nabla_\nu\}+\mathcal{F}_{\mu\nu}]\nonumber\\ =-\nabla_\mu \nabla^\mu -\frac{1}{4}[\gamma^\mu,\gamma^\nu]\mathcal{F}_{\mu\nu}\end{align} where use has been made of the relation [\nabla_\mu,\nabla_\nu]=\mathcal{F}_{\mu\nu}. Then \begin{align}\mathbf{A}(x)=\sum_i \langle \psi_i|x\rangle\langle x|\gamma^{m+1}\exp [(\nabla^2 +\frac{1}{4}[\gamma^\mu,\gamma^\nu]\mathcal{F}_{\mu\nu})/M^2]|\psi_i\rangle |_{M\rightarrow \infty}.\end{align} Let us take m=4 for definiteness. We introduce the plane wave basis as \langle x|\psi_i\rangle =\int \frac{d^4k}{(2\pi)^4}\langle x|k\rangle \langle k|\psi_i\rangle. Then (24) becomes \begin{align}\mathbf{A}(x)=\int \frac{dk}{(2\pi)^4}\int \frac{dk'}{(2\pi)^4}\sum_i \langle \psi_i |k'\rangle \langle k'|x\rangle \nonumber\\ \times \left. \gamma^{m+1}\exp [(\nabla^2+\frac{1}{4}[\gamma^\mu,\gamma^\nu]\mathcal{F}_{\mu\nu})/M^2]\langle x|k\rangle\langle k|\psi_i\rangle \right|_{M\rightarrow \infty,\ y\rightarrow x}\nonumber\\ =\int \frac{dk}{(2\pi)^4}\mbox{tr}\gamma^{m+1}\exp [(-k^2+\frac{1}{4}[\gamma^\mu,\gamma^\nu]\mathcal{F}_{\mu\nu})/M^2]_{M\rightarrow \infty}\end{align} where use has been made of completeness property \sum_i \langle k|\psi_i\rangle\langle \psi_i|k'\rangle =(2\pi)^4\delta^4 (k-k'). In (25), we have replaced \nabla^2 be the symbol -k^2 since the residual terms containing \mathcal{A} do not survive in the limit M\rightarrow \infty. If we put \tilde{k}^\mu\equiv k^\mu/M. (25) becomes \mathbf{A}(x)=\mbox{tr}[\gamma^5 \exp (\frac{1}{4}[\gamma^\mu,\gamma^\nu]\mathcal{F}_{\mu\nu}/M^2)]M^4\int \frac{d\tilde{k}}{(2\pi)^4}\exp (-\tilde{k}^2). We expand the first exponential and use \mbox{tr}\gamma^5=\mbox{tr}\gamma^5\gamma^\mu\gamma^\nu=0\quad \mbox{tr}\gamma^5\gamma^\kappa\gamma^\lambda\gamma^\mu\gamma^\nu=-4\epsilon^{\kappa\lambda\mu\nu}\\ \int d\tilde{k}\exp (-\tilde{k}^2)=\pi^2 to obtain \begin{align}\mathbf{A}(x)=\frac{1}{2}\mbox{tr}\left[ \gamma^5\frac{1}{4^2}\{[\gamma^\mu,\gamma^\nu]\mathcal{F}_{\mu\nu}\}^2\right] \frac{1}{16\pi^2}\nonumber\\ =\frac{-1}{32\pi^2}\mbox{tr}\epsilon^{\kappa\lambda\mu\nu}\mathcal{F}_{\kappa\lambda}(x)\mathcal{F}_{\mu\nu}(x).\end{align} Note that the higher-order terms in the expansion of the exponential vanish in the limit M\rightarrow \infty. The anomalous conservation law (19) now becomes \begin{align}\partial_\mu j^\mu_5=\frac{1}{16\pi^2}\mbox{tr}\epsilon^{\kappa\lambda\mu\nu}\mathcal{F}_{\kappa\lambda}\mathcal{F}_{\mu\nu}\nonumber\\ =\frac{1}{4\pi^2}\mbox{tr}[\epsilon^{\kappa\lambda\mu\nu} \partial_\kappa (\mathcal{A}_\lambda\partial_\mu\mathcal{A}_\nu+\frac{2}{3}\mathcal{A}_\lambda\mathcal{A}_\mu\mathcal{A}_\nu)].\end{align} This is regarded as a local version of the AS index theorem. Let us write (27) in terms of the field strength \mathcal{F}=\frac{1}{2}\mathcal{F}_{\mu\nu}dx^\mu\wedge dx^\nu. We easily verify that \begin{align}\nu_+-\nu_-=\int_M dx\, \partial_\mu j^\mu_{m+1}=\int_M\mbox{ch}_2(\mathcal{F}).\end{align} This is the index theorem for a twisted spinor complex with trivial background geometry (\hat{A}(TM)=1).


For \dim M=m=2l, we have the following identity: \begin{align}\nu_+-\nu_-=\int_Mdx\, \partial_\mu j^\mu_{m+1}=\int_M\mbox{ch}_l(\mathcal{F})=\int_M\frac{1}{l!}\mbox{tr}\left(\frac{i\mathcal{F}}{2\pi}\right)^l.\end{align}